Respuesta :
The given particle position is
[tex]\vec{r}(t)=(5.0t+6.0t^{2})\hat{i}+(7.0-3.0t^{3})\hat{j}[/tex]
When t=5 s, the position vector is
[tex]\vec{r}_{1} = (5+150)\hat{i}+(7-375)\hat{j} = 175\hat{i}-368\hat{j}[/tex]
The reference vector at t = 5 s is
[tex]\vec{r}_(2) = 0\hat{i}+7\hat{j}.[/tex]
Let θ = the angle between the two vectors.
Then, by definition,
[tex]\vec{r}_{1}.\vec{r}_{2}=|r_{1}||r_{2}|cos\theta[/tex]
|r₁} = √[175²+(-368)²] = 407.4911
|r₂| = 7
[tex]\vec{r}_{1}.\vec{r}_{2}=(-368)*(7) = -2576[/tex]
Therefore
θ = cos⁻¹ -2576/(407.4911*7) = cos⁻¹ -0.9031 = 154.57°
Answer: 154.57°
[tex]\vec{r}(t)=(5.0t+6.0t^{2})\hat{i}+(7.0-3.0t^{3})\hat{j}[/tex]
When t=5 s, the position vector is
[tex]\vec{r}_{1} = (5+150)\hat{i}+(7-375)\hat{j} = 175\hat{i}-368\hat{j}[/tex]
The reference vector at t = 5 s is
[tex]\vec{r}_(2) = 0\hat{i}+7\hat{j}.[/tex]
Let θ = the angle between the two vectors.
Then, by definition,
[tex]\vec{r}_{1}.\vec{r}_{2}=|r_{1}||r_{2}|cos\theta[/tex]
|r₁} = √[175²+(-368)²] = 407.4911
|r₂| = 7
[tex]\vec{r}_{1}.\vec{r}_{2}=(-368)*(7) = -2576[/tex]
Therefore
θ = cos⁻¹ -2576/(407.4911*7) = cos⁻¹ -0.9031 = 154.57°
Answer: 154.57°
The angle of the particle's displacement vector is -65° from the positive x axis
Further explanation
Acceleration is rate of change of velocity.
[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]
[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]
a = acceleration ( m/s² )
v = final velocity ( m/s )
u = initial velocity ( m/s )
t = time taken ( s )
d = distance ( m )
Let us now tackle the problem !
Given :
[tex]\overrightarrow{r_1} = ( 5.0 ~ t + 6.0 ~ t^2) \widehat{i} + ( 7.0 - 3.0 ~ t^3 ) \widehat{j}[/tex]
[tex]\overrightarrow{r_2} = ( 0.0 )\widehat{i} + ( 7.0 ) \widehat{j}[/tex]
The find the displacement of the particles is to subtract the two position vectors:
[tex]\overrightarrow{\Delta r} = \overrightarrow{r_1} - \overrightarrow{r_2}[/tex]
[tex]\overrightarrow{\Delta r} = [( 5.0 ~ t + 6.0 ~ t^2) \widehat{i} + ( 7.0 - 3.0 ~ t^3 ) \widehat{j}] - [( 0.0 )\widehat{i} + ( 7.0 ) \widehat{j}][/tex]
[tex]\overrightarrow{\Delta r} = ( 5.0 ~ t + 6.0 ~ t^2) \widehat{i} + ( - 3.0 ~ t^3 ) \widehat{j}[/tex]
At t = 5.0 s ,
[tex]\overrightarrow{\Delta r} = ( 5.0 ~ t + 6.0 ~ t^2) \widehat{i} + ( - 3.0 ~ t^3 ) \widehat{j}[/tex]
[tex]\overrightarrow{\Delta r} = ( 5.0 ~ (5.0) + 6.0 ~ (5.0)^2) \widehat{i} + ( - 3.0 ~ (5.0)^3 ) \widehat{j}[/tex]
[tex]\overrightarrow{\Delta r} = 175 \widehat{i} - 375 \widehat{j}[/tex]
[tex]\tan \theta = \frac{-375}{175}[/tex]
[tex]\tan \theta = \frac{-15}{7}[/tex]
[tex]\theta = \tan^{-1} (\frac{-15}{7})[/tex]
[tex]\large {\boxed {\theta \approx -65^o} }[/tex]
Learn more
- Velocity of Runner : https://brainly.com/question/3813437
- Kinetic Energy : https://brainly.com/question/692781
- Acceleration : https://brainly.com/question/2283922
- The Speed of Car : https://brainly.com/question/568302
Answer details
Grade: High School
Subject: Physics
Chapter: Kinematics
Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate
