Parameterize the disk [tex]S[/tex] by
[tex]\mathbf r(s,t)=\begin{cases}x(s,t)=s\cos t\\y(s,t)=s\sin t\\z(s,t)=4\end{cases}[/tex]
where [tex]0\le s\le3[/tex] and [tex]0\le t\le2\pi[/tex]. Call this parameterized region [tex]T[/tex]. Then
[tex]\mathbf r_s\times\mathbf r_t=(\cos t\,\mathbf i+\sin t\,\mathbf j)\times(-s\sin t\,\mathbf i+s\cos t\,\mathbf j)=s\,\mathbf k[/tex]
The flux over the disk is given by the surface integral
[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm dS=\iint_T\mathbf f(x(s,t),y(s,t),z(s,t))\cdot(\mathbf r_s(s,t)\times\mathbf r_t(s,t))\,\mathrm ds\,\mathrm dt[/tex]
[tex]=\displaystyle\int_{t=0}^{t=2\pi}\int_{s=0}^{s=3}(\cos(s^2)\,\mathbf k)\cdot(s\,\mathbf k)\,\mathrm ds\,\mathrm dt[/tex]
[tex]=\displaystyle2\pi\int_{s=0}^{s=3}s\cos(s^2)\,\mathrm ds[/tex]
[tex]=\displaystyle\pi\int_{\sigma=0}^{\sigma=9}\cos\sigma\,\mathrm d\sigma[/tex]
(where we take [tex]\sigma=s^2[/tex])
[tex]=\pi\sin 9[/tex]