2. If a costing Rs. 45,000 is sold at a discount of 20%.
Write the formula to find discount percent. Discount MP

(b) Find the discount [1] [Ans: Rs. 9,000.

(c) If the laptop is sold at a loss of 10%, find the cost price.

Respuesta :

msm555

Answer:

a) Formula: [tex] \textsf{Discount \%} = \dfrac{\textsf{Discount}}{\textsf{Marked Price}} \times 100\% [/tex]

b) Discount: Rs 9,000

c) cost price: Rs. 40,000

Step-by-step explanation:

(a) The formula to find the discount percentage ([tex] \textsf{Discount }\% [/tex]) is:

[tex] \textsf{Discount \%} = \dfrac{\textsf{Discount}}{\textsf{Marked Price}} \times 100\% [/tex]

Where:

  • [tex] \textsf{Discount} [/tex] is the amount of discount,
  • [tex] \textsf{Marked Price} [/tex] is the original price of the item.

(b) To find the discount, we can use the formula:

[tex] \textsf{Discount} = \textsf{Marked Price} \times \textsf{Discount \%} [/tex]

Given:

  • Marked Price ([tex] MP [/tex]) = Rs. 45,000
  • Discount Percentage ([tex] \textsf{Discount \%} [/tex]) = 20%

Substitute the values into the formula:

[tex] \textsf{Discount} = 45000 \times \dfrac{20}{100} \\\\= 45000 \times 0.20 \\\\= Rs. 9,000 [/tex]

So, the discount is Rs. 9,000.

(c) If the laptop is sold at a loss of 10%, we need to find the cost price.

Let the cost price be [tex] CP [/tex].

Given that the selling price is the price at which the item was sold after a discount, the selling price is:

[tex] \textsf{Selling Price} = \textsf{Marked Price} - \textsf{Discount} [/tex]

[tex] \sf \textsf{Selling Price} =\sf Rs 45,000 - 9,000 \\\\ =\sf Rs 3600 [/tex]

Now, to find the cost, we can use formula:

[tex]\sf CP = SP + loss\% \, of \, CP[/tex]

[tex]\sf CP- loss\% \, of \, CP = SP [/tex]

Substitute the values:

[tex]\sf CP (1-10\%) = 36000[/tex]

[tex]\sf CP \left(1-\dfrac{10}{100}\right) = 36000[/tex]

[tex]\sf CP \times \dfrac{90}{100}=36000[/tex]

[tex] \sf CP \times 0.90 = 36000 [/tex]

[tex]\sf CP = \dfrac{36000}{0.90} [/tex]

[tex] \sf CP = 40000 [/tex]

So, the cost price of the laptop is Rs. 40,000.