Answer:
[tex] \sqrt[5]{(-32y^{10})} [/tex]
Step-by-step explanation:
To convert the expression [tex](-32y^{10})^{\frac{1}{5}}[/tex] from rational exponent form to radical form, we recall that [tex]a^{\frac{m}{n}}[/tex] is equivalent to the [tex]n[/tex]-th root of [tex]a^m[/tex].
Therefore, we can express [tex](-32y^{10})^{\frac{1}{5}}[/tex] as the fifth root of [tex](-32y^{10})[/tex]:
[tex] (-32y^{10})^{\frac{1}{5}} = \sqrt[5]{(-32y^{10})} [/tex]
So, the expression [tex](-32y^{10})^{\frac{1}{5}}[/tex] in radical form is:
[tex] \sqrt[5]{(-32y^{10})} [/tex]