Respuesta :
Answer:
880.3 ft
Step-by-step explanation:
To find the total length of the bottom of the pyramid face, we can use the Pythagorean theorem in combination with the given height and lateral side length.
Let's denote:
- [tex] h [/tex] as the height of the pyramid (481 feet).
- [tex] s [/tex] as the lateral side length (652 feet).
- [tex] l [/tex] as the total length of the bottom of the pyramid face that we want to find.
Using the Pythagorean theorem, the length of the lateral side [tex] s [/tex] can be related to the height [tex] h [/tex] and the half of the total length of the bottom of the pyramid face [tex] l/2 [/tex]:
[tex] s^2 = \left(\dfrac{l}{2}\right)^2 + h^2 [/tex]
We need to solve for [tex] l [/tex]. First, we rearrange the equation:
[tex] \left(\dfrac{l}{2}\right)^2 = s^2 - h^2 [/tex]
[tex] \left(\dfrac{l}{2}\right)^2 = (652\, \textsf{ft})^2 - (481\, \textsf{ft})^2 [/tex]
Now, we calculate:
[tex] \left(\dfrac{l}{2}\right)^2 = (425104\, \textsf{ft}^2) - (231361\, \textsf{ft}^2) [/tex]
[tex] \left(\dfrac{l}{2}\right)^2 = 193743 \, \textsf{ft}^2 [/tex]
[tex] \dfrac{l^2}{4} = 193343\, \textsf{ft}^2 [/tex]
Now, we solve for [tex] l [/tex]:
[tex] l^2 = 4 \times 193343\, \text{ft}^2 [/tex]
[tex] l^2 = 774972\, \textsf{ft}^2 [/tex]
[tex] l = \sqrt{774972\, \textsf{ft}^2} [/tex]
[tex] l \approx 880.32494 \, \textsf{ft} [/tex]
[tex] l \approx 880.3 \, \textsf{ft (in 1 d.p.)} [/tex]
Thus, the total length of the bottom of the pyramid face is approximately [tex] 880.3 [/tex] feet.