Respuesta :
Answer:
Certainly! Let me simplify each expression for you:
1. \( \frac{\sqrt{5} \cdot r^2}{2r^5} \) simplifies to \( \frac{1}{2\sqrt{5}r^3} \)
2. \( \frac{3\sqrt[5]{6t}}{10\sqrt[3]{5}} \) simplifies to \( \frac{\sqrt[3]{2t}}{5} \)
3. \( \frac{18a^3b}{5b^2 \cdot 2} \) simplifies to \( \frac{9a^2}{5} \)
4. \( \frac{\sqrt{2} \cdot 5xy^3}{3 \cdot 5^3} \) simplifies to \( \frac{\sqrt{2}xy}{75} \)
5. \( \frac{-7e^4f}{15f^3 \cdot 4} \) simplifies to \( \frac{-7e}{60f^2} \)
6. \( \frac{-3h^2}{4 \cdot 21h^2j} \) simplifies to \( \frac{-1}{28j} \)
Answer:
- [tex] r^3 [/tex]
- [tex] \dfrac{1}{2t^5} [/tex]
- [tex] \dfrac{3a^2}{b^6} [/tex]
- [tex] \dfrac{1}{5xy^3} [/tex]
- [tex] -\dfrac{e^{12}}{3f^4} [/tex]
- [tex] -\dfrac{1}{7}j^3 [/tex]
Step-by-step explanation:
The laws of indices are rules that govern the manipulation and simplification of expressions involving exponents. Here are some of the fundamental laws of indices:
- Multiplication: [tex] a^m \times a^n = a^{m+n} [/tex]
- Division: [tex] \dfrac{a^m}{a^n} = a^{m-n} [/tex]
- Power of a Power: [tex] (a^m)^n = a^{mn} [/tex]
- Power of a Product: [tex] (ab)^n = a^n b^n [/tex]
- Negative Exponent: [tex] a^{-n} = \dfrac{1}{a^n} [/tex]
- Zero Exponent: [tex] a^0 = 1 [/tex]
Let's simplify the given expressions using these laws:
1. [tex] \dfrac{r^5}{r^2} [/tex]
Using the division law:
[tex] \dfrac{r^5}{r^2} = r^{5-2}\\\\ = r^3 [/tex].
2. [tex] \dfrac{3t^5}{6t^{10}} [/tex]
We can simplify by dividing both the coefficient and the exponents:
[tex] \dfrac{3t^5}{6t^{10}} = \dfrac{1}{2}t^{5-10} \\\\= \dfrac{1}{2}t^{-5}\\\\= \dfrac{1}{2t^5} [/tex].
3. [tex] \dfrac{18a^5b^2}{6a^3b^8} [/tex]
Divide the coefficients and simplify the variables:
[tex] \dfrac{18a^5b^2}{6a^3b^8} = \dfrac{18}{6} \times \dfrac{a^5}{a^3} \times \dfrac{b^2}{b^8} \\\\= 3a^{5-3}b^{2-8} \\\\= 3a^2b^{-6}\\\\ = \dfrac{3a^2}{b^6} [/tex].
4. [tex] \dfrac{xy^2}{5x^3y^5} [/tex]
Divide the coefficients and simplify the variables:
[tex] \dfrac{xy^2}{5x^3y^5} = \dfrac{1}{5} \times \dfrac{y^2}{y^5} \times \dfrac{x}{x^3} \\\\= \dfrac{1}{5}y^{2-5}x^{1-3}\\\\ = \dfrac{1}{5}y^{-3}x^{-2}\\\\ = \dfrac{1}{5xy^3} [/tex].
5. [tex] \dfrac{-7e^{15}f^4}{21e^3f^8} [/tex]
Divide the coefficients and simplify the variables:
[tex] \dfrac{-7e^{15}f^4}{21e^3f^8} = \dfrac{-7}{21} \times \dfrac{e^{15}}{e^3} \times \dfrac{f^4}{f^8} \\\\= -\dfrac{1}{3}e^{15-3}f^{4-8}\\\\ = -\dfrac{1}{3}e^{12}f^{-4}\\\\ = -\dfrac{e^{12}}{3f^4} [/tex].
6. [tex] \dfrac{-3hj^4}{21hj} [/tex]
Divide the coefficients and simplify the variables:
[tex] \dfrac{-3hj^4}{21hj} = \dfrac{-3}{21} \times \dfrac{j^4}{j} \\\\= -\dfrac{1}{7}j^{4-1} \\\\= -\dfrac{1}{7}j^3 [/tex].