Respuesta :

[tex]\bf \textit{Sum and Difference Identities} \\ \quad \\ sin({{ \alpha}} + {{ \beta}})=sin({{ \alpha}})cos({{ \beta}}) + cos({{ \alpha}})sin({{ \beta}}) \\ \quad \\ \boxed{sin({{ \alpha}} - {{ \beta}})=sin({{ \alpha}})cos({{ \beta}})- cos({{ \alpha}})sin({{ \beta}})}[/tex]

[tex]\bf cos({{ \alpha}} + {{ \beta}})= cos({{ \alpha}})cos({{ \beta}})- sin({{ \alpha}})sin({{ \beta}}) \\ \quad \\ cos({{ \alpha}} - {{ \beta}})= cos({{ \alpha}})cos({{ \beta}}) + sin({{ \alpha}})sin({{ \beta}})\\\\ -------------------------------\\\\ sin(48^o)cos(15^o)-cos(48^o)sin(15^o)\implies sin(48^o+15^o) \\\\\\ sin(63^o)[/tex]

Answer:

The expression in terms of the sine expression is given by:

            [tex]\sin 48\cos 15-\cos 48\sin 15=\sin 33\degree[/tex]

Step-by-step explanation:

The expression is given as:

[tex]\sin 48\cos 15-\cos 48\sin 15[/tex]

Now we know that the formula is as follows:

[tex]\sin \alpha \cos \beta-\cos \alpha \sin \beta=\sin (\alpha-\beta)[/tex]

Here on comparing the given expression with the above formula we have:

[tex]\sin 48\cos 15-\cos 48\sin 15=\sin (48-15)[/tex]

i.e.

            [tex]\sin 48\cos 15-\cos 48\sin 15=\sin 33[/tex]

ACCESS MORE