Respuesta :
Answer:
This means that Harry does not need to jump at any particular speed to reach the pool. He can simply drop down from the top of the building and still reach the pool.
Explanation:
To calculate the speed at which Harry needs to jump to reach the pool, we can use the principle of conservation of energy.
First, let's find the gravitational potential energy (GPE) of Harry at the top of the building. The GPE can be calculated using the formula:
GPE = mass * gravity * height
Since Harry's mass is not given, we can assume it to be negligible in this context.
GPE = 0 * 9.8 * 20.0 = 0 J
Next, let's find the kinetic energy (KE) that Harry needs at the base of the building to reach the pool. The KE can be calculated using the formula:
KE = (1/2) * mass * velocity^2
Since we are looking for the velocity, we can rearrange the equation as:
velocity = sqrt((2 * KE) / mass)
Here, the mass is again assumed to be negligible.
KE = 0.5 * 0 * velocity^2 = 0 J
Since energy is conserved, the GPE at the top of the building is equal to the KE at the base:
0 = 0
This means that Harry does not need to jump at any particular speed to reach the pool. He can simply drop down from the top of the building and still reach the pool.