Answer:
[tex]\text{Third option is correct.}[/tex]
Step-by-step explanation:
[tex]\text{Solution:}\\\text{p}(x)=2x^2-4x\\\text{q}(x)=x-3\\\therefore\ \text{poq}(x)=\text{p\{q}(x)\}=\text{p}(x-3)=2(x-3)^2-4(x-3)\\\text{or, }\text{poq}(x)=2(x^2-6x+9)-4x+12\\\text{or, poq}(x)=2x^2-12x+18-4x+12\\\text{or, poq}(x)=2x^2-16x+30[/tex]