Respuesta :
Answer:
A ≈ 23.56 in²
Step-by-step explanation:
The shaded area (A) is calculated as
A = area of circle × fraction of circle
The central angle, subtended by the arc = 360° - 225° = 135° , then
A = 2πr × [tex]\frac{135}{360}[/tex] ( r is the radius ) , here r = 10 in
A = 2π × 10 × [tex]\frac{3}{8}[/tex]
= 20π × [tex]\frac{3}{8}[/tex]
= [tex]\frac{60\pi }{8}[/tex]
≈ 23.56 in² ( to 2 decimal places )
Answer:
[tex]37.5\pi \textsf{ or } 117.81 [/tex] square inches
Step-by-step explanation:
To find the area of the shaded sector in the circle, we can use the formula for the area of a sector:
[tex]\Large\boxed{\boxed{ \textsf{Area of sector} = \dfrac{\textsf{Central angle}}{360°} \times \pi r^2}} [/tex]
Given:
- Radius ([tex]r[/tex]) = 10 inches
- Central angle for the unshaded sector = [tex]225°[/tex]
First, find the central angle for the shaded sector:
[tex] \textsf{Central angle for the shaded sector} = 360° - 225° [/tex]
[tex] \textsf{Central angle for the shaded sector} = 135° [/tex]
Now, use the formula for the area of a sector to find the area of the shaded sector:
[tex] \textsf{Area of shaded sector} = \dfrac{135°}{360°} \times \pi (10)^2 [/tex]
Simplify the expression:
[tex] \textsf{Area of shaded sector} = \dfrac{135}{360} \times 100\pi [/tex]
Reduce the fraction:
[tex] \textsf{Area of shaded sector} = \dfrac{3}{8} \times 100\pi [/tex]
Calculate the area:
[tex] \textsf{Area of shaded sector} = \dfrac{300\pi}{8} [/tex]
[tex] \textsf{Area of shaded sector} = 37.5\pi [/tex]
[tex] \textsf{Area of shaded sector} = 117.8097245 [/tex]
[tex] \textsf{Area of shaded sector} = 117.81\textsf{ inches}^2 \textsf{(rounded to nearest hundredth)}[/tex]
So, the area of the shaded sector in the circle is [tex]37.5\pi \textsf{ or } 117.81 [/tex] square inches.