Respuesta :

Answer:

A ≈ 23.56 in²

Step-by-step explanation:

The shaded area (A) is calculated as

A = area of circle × fraction of circle

The central angle, subtended by the arc = 360° - 225° = 135° , then

A = 2πr × [tex]\frac{135}{360}[/tex] ( r is the radius ) , here r = 10 in

A = 2π × 10 × [tex]\frac{3}{8}[/tex]

  = 20π × [tex]\frac{3}{8}[/tex]

  = [tex]\frac{60\pi }{8}[/tex]

  ≈ 23.56 in² ( to 2 decimal places )

msm555

Answer:

[tex]37.5\pi \textsf{ or } 117.81 [/tex] square inches

Step-by-step explanation:

To find the area of the shaded sector in the circle, we can use the formula for the area of a sector:

[tex]\Large\boxed{\boxed{ \textsf{Area of sector} = \dfrac{\textsf{Central angle}}{360°} \times \pi r^2}} [/tex]

Given:

  • Radius ([tex]r[/tex]) = 10 inches
  • Central angle for the unshaded sector = [tex]225°[/tex]

First, find the central angle for the shaded sector:

[tex] \textsf{Central angle for the shaded sector} = 360° - 225° [/tex]

[tex] \textsf{Central angle for the shaded sector} = 135° [/tex]

Now, use the formula for the area of a sector to find the area of the shaded sector:

[tex] \textsf{Area of shaded sector} = \dfrac{135°}{360°} \times \pi (10)^2 [/tex]

Simplify the expression:

[tex] \textsf{Area of shaded sector} = \dfrac{135}{360} \times 100\pi [/tex]

Reduce the fraction:

[tex] \textsf{Area of shaded sector} = \dfrac{3}{8} \times 100\pi [/tex]

Calculate the area:

[tex] \textsf{Area of shaded sector} = \dfrac{300\pi}{8} [/tex]

[tex] \textsf{Area of shaded sector} = 37.5\pi [/tex]

[tex] \textsf{Area of shaded sector} = 117.8097245 [/tex]

[tex] \textsf{Area of shaded sector} = 117.81\textsf{ inches}^2 \textsf{(rounded to nearest hundredth)}[/tex]

So, the area of the shaded sector in the circle is [tex]37.5\pi \textsf{ or } 117.81 [/tex] square inches.