Which expression has the same value as m-4 + 1/5-4

choices:
a) 1/m* 1/m* 1/m* 1/m + 5*5*5*5
b) m-4 + 1/5-4
c) 1/m* 1/m *1/m *1/m + 4*4*4*4*4
d) 1/m* 1/m *1/m *1/m + 1/5 * 1/5 * 1/5 * 1/5

Respuesta :

if its m-4 + 1/5-4, it's b
if you meant m^-4 + (1/5)^-4, it should be a

Answer:

[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+5\times 5\times 5\times 5[/tex]

[tex]m^{-4}+\frac{1}{5^{-4}}[/tex]

Step-by-step explanation:

Given expression,

[tex]m^{-4}+\frac{1}{5^{-4}}[/tex]

In option a),

[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+5\times 5\times 5\times 5[/tex]

By using product rule of exponent,

[tex]\frac{1}{m^{1+1+1+1}}+5^{1+1+1+1}[/tex]

[tex]=\frac{1}{m^4}+5^4[/tex]

By using [tex]a^m=\frac{1}{a^{-m}}[/tex]

[tex]=m^{-4}+\frac{1}{5^{-4}}[/tex]

Similarly, in option c),

[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+4\times 4\times 4\times 4[/tex]

[tex]\frac{1}{m^{1+1+1+1}}+4^{1+1+1+1}[/tex]

[tex]=\frac{1}{m^4}+4^4[/tex]

[tex]=m^{-4}+\frac{1}{4^{-4}}[/tex]

In option d)

[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+\frac{1}{5}\times \frac{1}{5}\times \frac{1}{5}\times \frac{1}{5}[/tex]

[tex]\frac{1}{m^{1+1+1+1}}+\frac{1}{5^{1+1+1+1}}[/tex]

[tex]=\frac{1}{m^4}+\frac{1}{5^4}[/tex]

Hence, option a) and b) are correct.

ACCESS MORE