Respuesta :
if its m-4 + 1/5-4, it's b
if you meant m^-4 + (1/5)^-4, it should be a
if you meant m^-4 + (1/5)^-4, it should be a
Answer:
[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+5\times 5\times 5\times 5[/tex]
[tex]m^{-4}+\frac{1}{5^{-4}}[/tex]
Step-by-step explanation:
Given expression,
[tex]m^{-4}+\frac{1}{5^{-4}}[/tex]
In option a),
[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+5\times 5\times 5\times 5[/tex]
By using product rule of exponent,
[tex]\frac{1}{m^{1+1+1+1}}+5^{1+1+1+1}[/tex]
[tex]=\frac{1}{m^4}+5^4[/tex]
By using [tex]a^m=\frac{1}{a^{-m}}[/tex]
[tex]=m^{-4}+\frac{1}{5^{-4}}[/tex]
Similarly, in option c),
[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+4\times 4\times 4\times 4[/tex]
[tex]\frac{1}{m^{1+1+1+1}}+4^{1+1+1+1}[/tex]
[tex]=\frac{1}{m^4}+4^4[/tex]
[tex]=m^{-4}+\frac{1}{4^{-4}}[/tex]
In option d)
[tex]\frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}\times \frac{1}{m}+\frac{1}{5}\times \frac{1}{5}\times \frac{1}{5}\times \frac{1}{5}[/tex]
[tex]\frac{1}{m^{1+1+1+1}}+\frac{1}{5^{1+1+1+1}}[/tex]
[tex]=\frac{1}{m^4}+\frac{1}{5^4}[/tex]
Hence, option a) and b) are correct.