Respuesta :
Answer:
(0,0) and (20, -274.64)
Step-by-step explanation:
To solve for the critical points of the given function, we must find where the derivative of the function is equal to zero.
Given function:
[tex]f(x) = -45x^{\dfrac{4}{5}}+x^{\dfrac{9}{5}}[/tex]
[tex]\hrulefill[/tex]
Take the derivative of the function[tex]\hrulefill[/tex]
We have,
[tex]f(x) = -45x^{\dfrac{4}{5}}+x^{\dfrac{9}{5}}[/tex]
Taking the derivative:
[tex]\Longrightarrow \dfrac{d}{dx}\left[f(x) = -45x^{\dfrac{4}{5}}+x^{\dfrac{9}{5}}\right][/tex]
[tex]\Longrightarrow \dfrac{d}{dx}\left[f(x)\right] = \dfrac{d}{dx}\left[-45x^{\dfrac{4}{5}}+x^{\dfrac{9}{5}}\right][/tex]
We can use the power rule for differentiation on the R.H.S:
[tex]\boxed{\begin{array}{ccc}\text{\underline{Power Rule for Differentiation:}}\\\\ \dfrac{d}{dx}[x^n]=nx^{n-1} \\ &\end{array}}[/tex]
[tex]\Longrightarrow f'(x) = \left(\dfrac{4}{5}\cdot-45\right)x^{\dfrac{4}{5}-1}+\dfrac{9}{5}x^{\dfrac{9}{5}-1}[/tex]
[tex]\Longrightarrow f'(x) = -36x^{\dfrac{4}{5}-\dfrac{5}{5}}+\dfrac{9}{5}x^{\dfrac{9}{5}-\dfrac{5}{5}}[/tex]
[tex]\therefore f'(x) = -36x^{-\dfrac{1}{5}}+\dfrac{9}{5}x^{\dfrac{4}{5}}[/tex]
[tex]\hrulefill[/tex]
Set the derivative equal to zero and solve for 'x'[tex]\hrulefill[/tex]
We have,
[tex]f'(x) = -36x^{-\dfrac{1}{5}}+\dfrac{9}{5}x^{\dfrac{4}{5}}[/tex]
Letting f'(x) = 0 and solving for 'x':
[tex]\Longrightarrow 0 = -36x^{-\dfrac{1}{5}}+\dfrac{9}{5}x^{\dfrac{4}{5}}[/tex]
[tex]\Longrightarrow \left[0 = -36x^{-\dfrac{1}{5}}+\dfrac{9}{5}x^{\dfrac{4}{5}}\right] \cdot 5[/tex]
[tex]\Longrightarrow 0 = 9x^{\dfrac{4}{5}}-180x^{-\dfrac{1}{5}}[/tex]
[tex]\Longrightarrow 0 = 9\left(x^{\dfrac{4}{5}}-20x^{-\dfrac{1}{5}}\right)[/tex]
[tex]\Longrightarrow 0 = x^{\dfrac{4}{5}}-20x^{-\dfrac{1}{5}}\right\\\\\\\\\Longrightarrow 0 = x^{-\dfrac{1}{5}} \left(x-20}\right)\\\\\\\\\Longrightarrow 0 = x-20\\\\\\\\\therefore x = \{0, 20\}[/tex]
Thus, we have a critical number at x = 0 and x = 20.[tex]\hrulefill[/tex]
Use critical numbers to find critical points[tex]\hrulefill[/tex]
To determine the critical points, plug in the critical numbers into the original function and find 'f(x)'.
We have,
[tex]f(x) = -45x^{\dfrac{4}{5}}+x^{\dfrac{9}{5}}; \ x = 0 \text{ and } x = 20[/tex]
When x = 0:
[tex]\Longrightarrow f(0) = -45(0)^{\dfrac{4}{5}}+(0)^{\dfrac{9}{5}}\\\\\\\\\therefore f(0)=0[/tex]
When x = 20:
[tex]\Longrightarrow f(20) = -45(20)^{\dfrac{4}{5}}+(20)^{\dfrac{9}{5}}\\\\\\\\\therefore f(20)\approx -274.64[/tex]
Thus, there are two critical points (0,0) and (20, -274.64).