Respuesta :

Answer: I got the same thing. -3.8 and 2.4

Step-by-step explanation:

  1. 2/3(x+1) if x=-6.7, 2/3(-6.7+1), 2/3(-5.7), -3.8
  2. -2(x-3)+1 if x=2.3, -2(2.3-3)+1, -2(-0.7)+1, 1.4+1, 2.4

Answer:

[tex]f(-6.7)=-3.8=-\dfrac{19}{5}[/tex]

[tex]f(2.3)=2.4=\dfrac{12}{5}[/tex]

Step-by-step explanation:

To find f(-6.7), we can substitute x = -6.7 into function f(x):

[tex]f(-6.7)=\dfrac{2}{3}(-6.7+1)[/tex]

[tex]f(-6.7)=\dfrac{2}{3}(-5.7)[/tex]

[tex]f(-6.7)=\dfrac{2(-5.7)}{3}[/tex]

[tex]f(-6.7)=-\dfrac{11.4}{3}[/tex]

[tex]f(-6.7)=-3.8[/tex]

To express this as a fraction, multiply and divide -3.8 by 10 to remove the decimal:

[tex]f(-6.7)=-\dfrac{3.8 \cdot 10}{10}[/tex]

[tex]f(-6.7)=-\dfrac{38}{10}[/tex]

Now, reduce the fraction to its simplest form by dividing the numerator and denominator by the greatest common factor 2:

[tex]f(-6.7)=-\dfrac{19}{5}[/tex]

[tex]\hrulefill[/tex]

To find f(2.3), we can substitute x = 2.3 into function f(x):

[tex]f(2.3)=-2(2.3-3)+1[/tex]

[tex]f(2.3)=-2(-0.7)+1[/tex]

[tex]f(2.3)=1.4+1[/tex]

[tex]f(2.3)=2.4[/tex]

To express this as a fraction, multiply and divide 2.4 by 10 to remove the decimal:

[tex]f(2.3)=\dfrac{2.4\cdot 10}{10}[/tex]

[tex]f(2.3)=\dfrac{24}{10}[/tex]

Now, reduce the fraction to its simplest form by dividing the numerator and denominator by the greatest common factor 2:

[tex]f(2.3)=\dfrac{12}{5}[/tex]