Respuesta :
!<Answer>!
To find the exact value of each of the six trigonometric functions of angle θ, where a point on the terminal side of the angle in standard position is (-15, 8), we can use the given coordinates to calculate the necessary values.
First, we need to determine the distance r from the origin to the point (-15, 8) using the Pythagorean theorem:
r = √((-15)^2 + 8^2)
r = √(225 + 64)
r = √289
r = 17
Next, we can determine the values of the trigonometric functions using the given coordinates (-15, 8) and the calculated value of r.
1. The sine function (sin θ) is equal to the y-coordinate divided by r:
sin θ = 8/17
2. The cosine function (cos θ) is equal to the x-coordinate divided by r:
cos θ = -15/17
3. The tangent function (tan θ) is equal to the y-coordinate divided by the x-coordinate:
tan θ = 8/-15
4. The cosecant function (csc θ) is equal to the reciprocal of the sine function:
csc θ = 1/(8/17) = 17/8
5. The secant function (sec θ) is equal to the reciprocal of the cosine function:
sec θ = 1/(-15/17) = -17/15
6. The cotangent function (cot θ) is equal to the reciprocal of the tangent function:
cot θ = 1/(8/-15) = -15/8
So, the exact values of the six trigonometric functions of angle θ are:
sin θ = 8/17
cos θ = -15/17
tan θ = 8/-15 = -8/15
csc θ = 17/8
sec θ = -17/15
cot θ = -15/8
These values represent the ratios of the sides of a right triangle formed by the given angle in standard position.
Answer:
[tex] \sin(\theta) = \dfrac{8}{17} [/tex]
[tex] \cos(\theta) =- \dfrac{15}{17} [/tex]
[tex] \tan(\theta) = -\dfrac{8}{15} [/tex]
[tex] \csc(\theta) = \dfrac{17}{8} [/tex]
[tex] \sec(\theta) = -\dfrac{17}{15} [/tex]
[tex] \cot(\theta) = -\dfrac{15}{8} [/tex]
Step-by-step explanation:
To find the trigonometric functions of the angle [tex] \theta [/tex] in standard position given the point [tex](-15, 8)[/tex], we can use the properties of right triangles and the definitions of trigonometric functions.
Given that the point [tex](-15, 8)[/tex] is in the second quadrant, we can construct a right triangle with legs of length 15 (horizontal distance) and 8 (vertical distance). The hypotenuse of this triangle can be found using the Pythagorean theorem:
[tex] c^2 = a^2 + b^2 [/tex]
[tex] c^2 = (-15)^2 + 8^2 [/tex]
[tex] c^2 = 225 + 64 [/tex]
[tex] c^2 = 289 [/tex]
[tex] c = 17 [/tex]
Now, let's find the trigonometric functions:
Sine ([tex] \sin [/tex]):
[tex] \sin(\theta) = \dfrac{\textsf{opposite}}{\textsf{hypotenuse}} \\\\ = \dfrac{8}{17} [/tex]
Cosine ([tex] \cos [/tex]):
[tex] \cos(\theta) = \dfrac{\textsf{adjacent}}{\textsf{hypotenuse}} \\\\= \dfrac{-15}{17} \\\\ = -\dfrac{15}{17}[/tex]
Tangent ([tex] \tan [/tex]):
[tex] \tan(\theta) = \dfrac{\textsf{opposite}}{\textsf{adjacent}}\\\\ = \dfrac{8}{-15}\\\\ = -\dfrac{8}{15} [/tex]
Cosecant ([tex] \csc [/tex]):
[tex] \csc(\theta) = \dfrac{1}{\sin(\theta)} \\\\= \dfrac{1}{\dfrac{8}{17}} \\\\ = \dfrac{17}{8} [/tex]
Secant ([tex] \sec [/tex]):
[tex] \sec(\theta) = \dfrac{1}{\cos(\theta)} \\\\ = \dfrac{1}{\dfrac{-15}{17}}\\\\ = -\dfrac{17}{15} [/tex]
Cotangent ([tex] \cot [/tex]):
[tex] \cot(\theta) = \dfrac{1}{\tan(\theta)} \\\\= \dfrac{1}{-\dfrac{8}{15}} \\\\= -\dfrac{15}{8} [/tex]