Answer:
[tex]615.44[/tex] cubic millimeters
Step-by-step explanation:
The formula for the volume ([tex]V[/tex]) of a cone is given by:
[tex] V = \dfrac{1}{3} \pi r^2 h [/tex]
where [tex]r[/tex] is the radius of the base and [tex]h[/tex] is the height of the cone.
Given that the diameter ([tex]d[/tex]) is twice the radius ([tex]r[/tex]), we can find [tex]r[/tex] by dividing the diameter by 2:
[tex] r = \dfrac{d}{2} [/tex]
In this case, the diameter ([tex]d[/tex]) is 14 mm, so the radius ([tex]r[/tex]) is:
[tex] r = \dfrac{14}{2} = 7 \textsf{ mm} [/tex]
Now, we have the radius ([tex]r[/tex]) and the height ([tex]h[/tex]).
Substitute these values into the volume formula:
[tex] V = \dfrac{1}{3} \pi (7)^2 (12) [/tex]
[tex] V = \dfrac{1}{3} \times 3.14 \times 49 \times 12 [/tex]
[tex] V = \dfrac{1}{3} \times 3.14 \times 588 [/tex]
[tex] V = 615.44 \textsf{ cubic millimeters} [/tex]
Rounded to the nearest hundredth, the volume of the cone is approximately [tex]615.44[/tex] cubic millimeters.