(g) If cos A = sin B = -1/3 . where A lies in 2nd quadrant and B lies in 3rd quadrant, find (tan A - tan B)/(tan A+ tan B).

Respuesta :

Answer:

[tex]1\frac{2}{7}[/tex]

Step-by-step explanation:

[tex]cosA=-\frac{1}{3}[/tex]

[tex]\frac{x_A}{r_A} =\frac{-1}{3}[/tex] (2nd quadrant → x negatif, y positive)

[tex]r_A^2=x_A^2+y_A^2[/tex]

[tex]3^2=(-1)^2+y_A^2[/tex]

[tex]y_A=2\sqrt{2}[/tex]

[tex]tanA=\frac{y_A}{x_A}[/tex]

        [tex]=\frac{2\sqrt{2} }{-1}[/tex]

        [tex]=-2\sqrt{2}[/tex]

[tex]sinB=-\frac{1}{3}[/tex]

[tex]\frac{y_B}{r_B} =\frac{-1}{3}[/tex] (3nd quadrant → x negatif, y negative)

[tex]r_B^2=x_B^2+y_B^2[/tex]

[tex]3^2=x_B^2+(-1)^2[/tex]

[tex]x_B=-2\sqrt{2}[/tex]

[tex]tanB=\frac{y_B}{x_B}[/tex]

        [tex]=\frac{-1}{-2\sqrt{2}}[/tex]

        [tex]=\frac{1}{4} \sqrt{2}[/tex]

[tex]\frac{tanA-tanB}{tanA+tanB}[/tex]

[tex]=\frac{-2\sqrt{2}-\frac{1}{4} \sqrt{2} }{-2\sqrt{2}+\frac{1}{4} \sqrt{2} }[/tex]

[tex]=\frac{-\frac{9}{4}\sqrt{2} }{-\frac{7}{4} \sqrt{2} }[/tex]

[tex]=\frac{9}{7}[/tex]

[tex]=1\frac{2}{7}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico