Respuesta :

Answer:

[tex]\sf\\Solution:\\\textsf{Here, let}\\P(n)=[\frac{n(n+1)}{2}]^2=1^3+2^3+3^3+...+n^3\\\\\textsf{Step 1: First, we check the validity of the given statement P(n) for n = 1.}\\P(1)=[\frac{1(1+1)}{2}]^2=[\frac{2}{2}]^2=1\\\textsf{So, P(1) is true.}[/tex]

[tex]\sf\\\textsf{Step 2: Now suppose that the statement P(n) is true for n = k.}\\or,\ P(k)=[\frac{k(k+1)}{2}]^2\\\\\therefore\ 1^3+2^3+3^3+...+k^3=[\frac{k(k+1)}{2}]^2.......(1)[/tex]

[tex]\sf\\\textsf{Step 3: Now let us try to establish that P(k+1) is also true.}\\\textsf{For this, add }(k+1)^3\textsf{ on both sides in equation(1).}\\1^3+2^3+3^3+...+k^3+(k+1)^3=[\frac{k(k+1)}{2}]^2+(k+1)^3\\or,\ P(k+1)=(k+1)^2[\frac{k^2}{4}+(k+1)]\\or,\ P(k+1)=(k+1)^2[\frac{k^2+4k+4}{4}]\\or,\ P(k+1)=(k+1)^2[\frac{k+2}{2}]^2\\or,\ P(k+1)=[\frac{(k+1)(k+2)}{2}]^2[/tex]

Answer:

Overall steps:

  • Verify the base case where [tex]n = 1[/tex].
  • Verify the induction step: assuming that [tex]1^{3} + \cdots + k^{3} = (k\, (k + 1) / 2)^{2}[/tex], show that [tex]1^{3} + \cdots + k^{3} + (k + 1)^{3} = ((k + 1)\, (k + 2) / 2)^{2}[/tex].

Step-by-step explanation:

Assuming that [tex]1[/tex] the smallest of all the natural numbers. The base case is to verify that the proposed relation holds for [tex]n = 1[/tex]:

[tex]\displaystyle (\text{LHS}) = 1^{3}[/tex].

[tex]\displaystyle (\text{RHS}) = \left(\frac{1\, (1 + 1)}{2}\right)^{2} = 1[/tex].

Hence, the base case is valid.

For the induction step, assume that for some natural number [tex]k[/tex], the proposed relation holds for [tex]n = k[/tex]. This assumption is the induction hypothesis:

[tex]\displaystyle 1^{3} + \cdots + k^{3} = \left(\frac{k\, (k + 1)}{2}\right)^{2}[/tex].

The goal is to verify that given the induction hypothesis for [tex]n = k[/tex], the same relation holds for [tex]n = (k + 1)[/tex]:

[tex](\text{LHS}) = 1^{3} + \cdots + k^{3} + (k + 1)^{3}[/tex].

[tex]\displaystyle (\text{RHS}) = \left(\frac{(k + 1)\, ((k + 1) + 1)}{2}\right)^{2} = \left(\frac{(k + 1)\, (k + 2)}{2}\right)^{2}[/tex].

Start by substituting the induction hypothesis for [tex]n = k[/tex] into the [tex](\text{LHS})[/tex] expression for [tex]n = (k + 1)[/tex]:

[tex]\begin{aligned} (\text{LHS}) &= 1^{3} + \cdots + k^{3} + (k + 1)^{3} \\ &= \left(\frac{k\, (k + 1)}{2}\right)^{2} + (k + 1)^{3} && (\text{induction hypothesis}) \\ &= \frac{k^{2}\, (k + 1)^{2}}{2^{2}} + (k + 1)^{2} \, (k + 1) \\ &= (k + 1)^{2}\, \left[\frac{k^{2}}{2^{2}} + (k + 1)\right] \\ &= (k + 1)^{2}\, \left[\frac{k^{2} + 2^{2}\, (k + 1)}{2^{2}}\right] \\ &= (k + 1)^{2} \, \left[\frac{k^{2} + 2\, (2\, k) + 2^{2}}{2^{2}}\right] \\ &= (k + 1)^{2}\, \left[\frac{(k + 2)^{2}}{2^{2}}\right]\end{aligned}[/tex].

Simplify to obtain:

[tex]\displaystyle \left(\frac{(k + 1)\, (k + 2)}{2}\right)^{2}[/tex].

In other words, given that the proposed relationship holds for [tex]n = k[/tex] for any natural number [tex]k[/tex], the same relationship will hold for [tex]n = (k + 1)[/tex].

Hence, by the principle of mathematical induction, the proposed relationship holds for all natural numbers.

ACCESS MORE