which polynomial represents the product of 5x-1 and x^2 + 3x - 4?

A. 5x^{3}+3x-4
B. 5x^{3}+15x^{2}-4
C. 5x^{3}+14x^{2}-23x+4
D. 5x^{3}+16x^{2}+17x+4

Respuesta :

Answer:

C

Step-by-step explanation:

(5x-1)(x^2+3x-4)

simply expand it

msm555

Answer:

[tex] C.\quad 5x^3 + 14x^2 - 23x + 4 [/tex]

Step-by-step explanation:

To find the product of [tex] (5x - 1) [/tex] and [tex] (x^2 + 3x - 4) [/tex], we can use the distributive property to multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.

[tex] (5x - 1)(x^2 + 3x - 4) [/tex]

Multiply each term in the first parenthesis by each term in the second parenthesis:

[tex]5x(x^2+3x-4)-1 (x^2 +3x-4)[/tex]

[tex] 5x \cdot x^2 + 5x \cdot 3x - 5x \cdot 4 - 1 \cdot x^2 - 1 \cdot 3x - 1 \cdot -4 [/tex]

Now, simplify each term:

[tex] 5x^3 + 15x^2 - 20x - x^2 - 3x + 4 [/tex]

Combine like terms:

[tex] 5x^3 + (15x^2 - x^2) + (-20x - 3x) + 4 [/tex]

[tex] 5x^3 + 14x^2 - 23x + 4 [/tex]

So, the polynomial that represents the product of [tex] (5x - 1) [/tex] and [tex] (x^2 + 3x - 4) [/tex] is:

[tex] C.\quad 5x^3 + 14x^2 - 23x + 4 [/tex]

ACCESS MORE