Respuesta :
Answer:
C
Step-by-step explanation:
(5x-1)(x^2+3x-4)
simply expand it
Answer:
[tex] C.\quad 5x^3 + 14x^2 - 23x + 4 [/tex]
Step-by-step explanation:
To find the product of [tex] (5x - 1) [/tex] and [tex] (x^2 + 3x - 4) [/tex], we can use the distributive property to multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.
[tex] (5x - 1)(x^2 + 3x - 4) [/tex]
Multiply each term in the first parenthesis by each term in the second parenthesis:
[tex]5x(x^2+3x-4)-1 (x^2 +3x-4)[/tex]
[tex] 5x \cdot x^2 + 5x \cdot 3x - 5x \cdot 4 - 1 \cdot x^2 - 1 \cdot 3x - 1 \cdot -4 [/tex]
Now, simplify each term:
[tex] 5x^3 + 15x^2 - 20x - x^2 - 3x + 4 [/tex]
Combine like terms:
[tex] 5x^3 + (15x^2 - x^2) + (-20x - 3x) + 4 [/tex]
[tex] 5x^3 + 14x^2 - 23x + 4 [/tex]
So, the polynomial that represents the product of [tex] (5x - 1) [/tex] and [tex] (x^2 + 3x - 4) [/tex] is:
[tex] C.\quad 5x^3 + 14x^2 - 23x + 4 [/tex]