50 POINTSSSS
Prove It
[tex] \frac{sin \frac{a}{2} + \sin(a) }{1 + \cos( \frac{a}{2} ) + \cos(a) } [/tex]
[tex] = \tan( \frac{a}{2} ) [/tex]

Respuesta :

I have tried solving them on in a book. Can you mark me brainiest?

Ver imagen raheemadom87

Formulas:

(i) sin(2a) = 2sin(a)cos(a)

(ii) cos(2a) = cos²a - sin²a

(iii) sin²(a) + cos²(a) = 1 same sin²(a/2) + cos²(a/2) = 1

Explanation:

[tex]\sf \rightarrow \dfrac{sin(a)+sin\left(\frac{a}{2}\right)}{1+cos\left(\frac{a}{2}\right)+cos(a)}[/tex]

use (i)

[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+cos(a)+1}[/tex]

use (ii)

[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+cos^2(\frac{a}{2}) - sin^2(\frac{a}{2})+1}[/tex]

use (iii)

[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+cos^2(\frac{a}{2}) - sin^2(\frac{a}{2})+sin^2(\frac{a}{2})+cos^2(\frac{a}{2})}[/tex]

simplify

[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+2cos^2(\frac{a}{2})}[/tex]

take common

[tex]\sf \rightarrow \dfrac{sin(\frac{a}{2})(2cos(\frac{a}{2})+1)}{cos\left(\frac{a}{2}\right)(1+2cos(\frac{a}{2}))}[/tex]

cancel out

[tex]\sf \rightarrow \dfrac{sin(\frac{a}{2})\left }{cos\left(\frac{a}{2}\right)}[/tex]

equals

[tex]\sf \rightarrow tan(\frac{a}{2})[/tex]; Hence, proved.