Respuesta :
I have tried solving them on in a book. Can you mark me brainiest?
Formulas:
(i) sin(2a) = 2sin(a)cos(a)
(ii) cos(2a) = cos²a - sin²a
(iii) sin²(a) + cos²(a) = 1 same sin²(a/2) + cos²(a/2) = 1
Explanation:
[tex]\sf \rightarrow \dfrac{sin(a)+sin\left(\frac{a}{2}\right)}{1+cos\left(\frac{a}{2}\right)+cos(a)}[/tex]
use (i)
[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+cos(a)+1}[/tex]
use (ii)
[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+cos^2(\frac{a}{2}) - sin^2(\frac{a}{2})+1}[/tex]
use (iii)
[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+cos^2(\frac{a}{2}) - sin^2(\frac{a}{2})+sin^2(\frac{a}{2})+cos^2(\frac{a}{2})}[/tex]
simplify
[tex]\sf \rightarrow \dfrac{2sin(\frac{a}{2})cos(\frac{a}{2})+sin\left(\frac{a}{2}\right)}{cos\left(\frac{a}{2}\right)+2cos^2(\frac{a}{2})}[/tex]
take common
[tex]\sf \rightarrow \dfrac{sin(\frac{a}{2})(2cos(\frac{a}{2})+1)}{cos\left(\frac{a}{2}\right)(1+2cos(\frac{a}{2}))}[/tex]
cancel out
[tex]\sf \rightarrow \dfrac{sin(\frac{a}{2})\left }{cos\left(\frac{a}{2}\right)}[/tex]
equals
[tex]\sf \rightarrow tan(\frac{a}{2})[/tex]; Hence, proved.