In a rectangle, the ratio of the length to the width is 5: 2. The length of the
rectangle is 13.875 feet greater than the width. What are the perimeter and the area of the rectangle?

Respuesta :

msm555

Answer:

[tex]\sf Perimeter =64.75 \textsf{ ft } [/tex]

[tex]\sf Area =213.90625 \textsf{ ft }^2 [/tex]

Step-by-step explanation:

Let's denote the width of the rectangle as [tex]\sf w [/tex] and the length as [tex]\sf l [/tex]. According to the given information:

The ratio of the length to the width is [tex]\sf 5:2 [/tex], which can be expressed as [tex]\sf \dfrac{l}{w} = \dfrac{5}{2} [/tex].

2. The length is 13.875 feet greater than the width, so:

[tex]\sf l = w + 13.875 [/tex].

Now, let's use this information to find the values of [tex]\sf l [/tex] and [tex]\sf w [/tex]. We can set up and solve the system of equations:

[tex]\sf \dfrac{l}{w} = \dfrac{5}{2} [/tex]

[tex]\sf l = w + 13.875 [/tex]

Substitute [tex]\sf l = w + 13.875 [/tex] into the first equation:

[tex]\sf \dfrac{w + 13.875}{w} = \dfrac{5}{2} [/tex]

Cross-multiply:

[tex]\sf 2(w + 13.875) = 5w [/tex]

Simplify:

[tex]\sf 2w + 27.75 = 5w [/tex]

Subtract [tex]\sf 2w [/tex] from both sides:

[tex]\sf 2w + 27.75 -2w = 5w-2w [/tex]

[tex]\sf 27.75 = 3w [/tex]

Divide by 3:

[tex]\sf \dfrac{ 27.75 }{3}=\dfrac{ 3w}{3} [/tex]

[tex]\sf w = 9.25 \textsf{ ft } [/tex]

Now that we have the width [tex]\bold{\sf w }[/tex], we can find the length [tex]\bold{\sf l }[/tex] using [tex]\sf l = w + 13.875 [/tex]:

[tex]\sf l = 9.25 + 13.875 = 23.125 \textsf{ ft} [/tex]

Now, we can calculate the perimeter [tex]\bold{\sf P }[/tex] and the area [tex]\bold{\sf A }[/tex] of the rectangle:

We know that: the formula to calculate the perimeter of a rectangle is:

[tex]\sf P = 2l + 2w [/tex]

where

  • P = perimeter,
  • l = length and
  • w = width

Now, substitute the value and simplify:

[tex]\sf P = 2(23.125) + 2(9.25) [/tex]

[tex]\sf P =64.75 \textsf{ ft } [/tex]

Therefore, the perimeter of the rectangle is 64.75 ft.

Now,

The formula to calculate the area of the rectangle is:

[tex]\sf A = lw [/tex]

where

  • A = Area,
  • l = length and
  • w = width

Now, substitute the value and simplify:

[tex]\sf A = (23.125)(9.25) [/tex]

[tex]\sf A =213.90625 \textsf{ ft }^2 [/tex]

Therefore, the area of the rectangle is 213.90625 ft².