Let me express the equation clearly:
lim x→-9 (x²-81)/(x+9)
Initially, we solve this by substituting x=-9 to the equation.
((-9)²-81)/(-9+9) = 0/0
The term 0/0 is undefined. This means that the solution is not see on the number line because it is imaginary. Other undefined terms are N/0 (where N is any number), 0⁰, 0×∞, ∞-∞, 1^∞ and ∞/∞. One way to solve this is by applying L'Hopitals Rule. This can be done by differentiating the numerator and denominator of the fraction independently. Then, you can already substitute the x=-9.
(2x-0)/(1+0) = 2x = 2(-9) = -18
The other easy way is to substitute x=-8.999 to the original equation. Note that the term x→-9 means that x only approaches to -9. Thus, you substitute a number that is very close to -9. Substituting x=-8.999
((-8.999)²-81)/(-8.999+9) = -18