A $33$-gon $P_1$ is drawn in the Cartesian plane. The sum of the $x$-coordinates of the $33$ vertices equals $99$. The midpoints of the sides of $P_1$ form a second $33$-gon, $P_2$. Finally, the midpoints of the sides of $P_2$ form a third $33$-gon, $P_3$. Find the sum of the $x$-coordinates of the vertices of $P_3$.

Respuesta :

1.
Given any 2 points P(a, b) and Q(c, d), the midpoint [tex]M_P_Q[/tex] of PQ is given by [tex]( \frac{a+c}{2}, \frac{b+d}{2} )[/tex].

2.
Let the x coordinates of the vertices of P_1 be : 

[tex]{x_1, x_2, x_3....x_3_3}[/tex]

the x coordinates of P_2 be :

[tex]{z_1, z_2, z_3....z_3_3}[/tex]

and the x coordinates of P_3 be:

[tex]{w_1, w_2, w_3....w_3_3}[/tex]

3.
we are given that 

[tex]x_1+ x_2+ x_3....+x_3_3=99[/tex]

and we want to find the value of [tex]w_1+ w_2+ w_3....+w_3_3[/tex].

4.

According to the midpoint formula:

[tex]z_1= \frac{x_1+x_2}{2} [/tex]

[tex]z_2= \frac{x_2+x_3}{2} [/tex]

[tex]z_3= \frac{x_3+x_4}{2} [/tex]
.
.
[tex]z_3_3= \frac{x_3_3+x_1}{2} [/tex]

and 


[tex]w_1= \frac{z_1+z_2}{2} [/tex]

[tex]w_2= \frac{z_2+z_3}{2} [/tex]

[tex]w_3= \frac{z_3+z_4}{2} [/tex]
.
.
[tex]w_3_3= \frac{z_3_3+z_1}{2} [/tex]

5.

[tex]w_1+ w_2+ w_3....+w_3_3=\frac{z_1+z_2}{2}+\frac{z_2+z_3}{2}+...\frac{z_3_3+z_1}{2}= \frac{2(z_1+z_2+ z_3....+z_3_3)}{2}[/tex]

[tex]=(z_1+z_2+ z_3....+z_3_3)=\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...\frac{x_3_3+x_1}{2}[/tex]

[tex]=\frac{2(x_1+x_2+ x_3....+x_3_3)}{2}=(x_1+x_2+ x_3....+x_3_3)=99[/tex]


Answer: 99