Respuesta :
To find B in terms of A (i hope this is what you want!) you can first multiply 3/7(B-25) by the reciprocal of 3/7, that being 7/3. You now have 7/3A=B-25, and through adding 25 on both sides, you have B=7/3A+25.
Hope this helps!
Hope this helps!
Answer:
[tex]B=\frac{7A}{3}+25[/tex]
Step-by-step explanation:
We have been given an equation [tex]A=\frac{3}{7}(B-25)[/tex]. We are asked to find the value of B for our given equation.
Upon multiplying both sides of our equation by [tex]\frac{7}{3}[/tex], we will get:
[tex]\frac{7}{3}*A=\frac{7}{3}*\frac{3}{7}(B-25)[/tex]
[tex]\frac{7}{3}*A=B-25[/tex]
[tex]\frac{7A}{3}+25=B-25+25[/tex]
[tex]\frac{7A}{3}+25=B[/tex]
[tex]B=\frac{7A}{3}+25[/tex]
Therefore, the value of B is [tex]\frac{7A}{3}+25[/tex].