Respuesta :
It's D, it's the only one where it has a -6 at the end other than A, but if you look at the A when distributed there isn't a 23x
Answer:
Option D. [tex]-(4x-3)(5x-2)[/tex]
Step-by-step explanation:
we have
[tex]f(x)=-20x^{2}+23x-6[/tex]
Equate the function to zero
[tex]-20x^{2}+23x-6=0[/tex]
Group terms that contain the same variable, and move the constant to the opposite side of the equation
[tex]-20x^{2}+23x=6[/tex]
Factor the leading coefficient
[tex]-20(x^{2}-(23/20)x)=6[/tex]
Complete the square. Remember to balance the equation by adding the same constants to each side
[tex]-20(x^{2}-(23/20)x+(529/1,600))=6-(529/80)[/tex]
[tex]-20(x^{2}-(23/20)x+(529/1,600))=-(49/80)[/tex]
[tex](x^{2}-(23/20)x+(529/1,600))=(49/1,600)[/tex]
Rewrite as perfect squares
[tex](x-(23/40))^{2}=(49/1,600)[/tex]
[tex](x-(23/40))=(+/-)(7/40)[/tex]
[tex]x=(23/40)(+/-)(7/40)[/tex]
[tex]x=(23/40)(+)(7/40)=30/40=3/4[/tex]
[tex]x=(23/40)(-)(7/40)=16/40=2/5[/tex]
therefore
[tex]-20x^{2}+23x-6=-20(x-(3/4))(x-(2/5))[/tex]
[tex]-20x^{2}+23x-6=-(5)(4)(x-(3/4))(x-(2/5))[/tex]
[tex]-20x^{2}+23x-6=-(4x-3)(5x-2)[/tex]