Respuesta :
Everyone should do this derivation, because otherwise the "quadratic formula" is some sort of "magic" LOL...
ax^2+bx+c=0
x^2+bx/a+c/a=0
x^2+bx/a=-c/a
x^2+bx/a+b^2x/(4a^2)=b^2/(4a^2)-c/a
(x+b/(2a))^2=(b^2-4ac)/(4a^2)
x+b/(2a)=±√(b^2-4ac)/(2a)
x=-b/(2a)±√(b^2-4ac)/(2a)
x=(-b±√b^2-4ac)/(2a)
ax^2+bx+c=0
x^2+bx/a+c/a=0
x^2+bx/a=-c/a
x^2+bx/a+b^2x/(4a^2)=b^2/(4a^2)-c/a
(x+b/(2a))^2=(b^2-4ac)/(4a^2)
x+b/(2a)=±√(b^2-4ac)/(2a)
x=-b/(2a)±√(b^2-4ac)/(2a)
x=(-b±√b^2-4ac)/(2a)
Answer:
See below.
Step-by-step explanation:
We are going to take the quadratic formula ax²+bx+c=0
a.Divide all terms in the equation by a.
[tex]\frac{ax^{2} }{a} +\frac{b}{a}x+\frac{c}{a}=0\\\\x^{2} +\frac{b}{a}x+\frac{c}{a} =0[/tex]
b.Subtract the constant (the term without an x) from both sides.
[tex]x^{2} +\frac{b}{a}x+\frac{c}{a} -\frac{c}{a} =\frac{-c}{a} \\\\x^{2} +\frac{b}{a}x=-\frac{c}{a}[/tex]
c.Add a constant (in terms of a and b) that will complete the square.
[tex]x^{2} +\frac{b}{a}x=-\frac{c}{a}\\\\[tex]x^{2} +\frac{b}{a}x+\frac{b^{2} }{4a^{2} } =-\frac{c}{a} +\frac{b^{2} }{4a^{2}}\\\\(x+\frac{b}{2a}) ^{2} =\frac{-4ac+b^{2} }{4a^{2} }[/tex]
d.Take the square root of both sides of the equation.
[tex]x+\frac{b}{2a} =[tex]\\x+\frac{b}{2a} =\frac{\sqrt{-4ac+b^{2} } }{2a}\\x=\frac{\sqrt{-4ac+b^{2} } }{2a}-\frac{b}{2a} [/tex]
e.Solve for x.
[tex]x=-b+\frac{\sqrt{b^{2}-4ac } }{2a}[/tex]