Respuesta :
The cost function is a parabola with vertex of (500, 24000) therefore the function is of the form
y = a(x - 500)² + 24000
Because the y-intercept is 11000, therefore
a(0 - 500)² + 24000 = 11000
a = (11000 - 24000)/500² = -0.052
The cost function is
y = -0.052*(x - 500)² + 24000
If x vacuums are sold at $280 per vacuum, then to make a profit requires that
280x ≥ y
or
280x ≥ -0.052(x-500)² + 24000
0.052(x - 500)² + 280x - 24000 ≥ 0
Answer:
The cost function is
y = -0.052(x - 500)² + 24000
To make a profit,
0.052(x - 500)² + 280x - 24000 ≥ 0
y = a(x - 500)² + 24000
Because the y-intercept is 11000, therefore
a(0 - 500)² + 24000 = 11000
a = (11000 - 24000)/500² = -0.052
The cost function is
y = -0.052*(x - 500)² + 24000
If x vacuums are sold at $280 per vacuum, then to make a profit requires that
280x ≥ y
or
280x ≥ -0.052(x-500)² + 24000
0.052(x - 500)² + 280x - 24000 ≥ 0
Answer:
The cost function is
y = -0.052(x - 500)² + 24000
To make a profit,
0.052(x - 500)² + 280x - 24000 ≥ 0