Respuesta :

I assume the coefficient on [tex]x[/tex] in the second equation is [tex]-\dfrac74[/tex]. The coefficient matrix

[tex]\begin{bmatrix}-6&4\\\\-\frac74&2\end{bmatrix}[/tex]

has eigenvalues given by

[tex]\begin{vmatrix}-6-\lambda&4\\\\-\frac74&2-\lambda\end{vmatrix}=\lambda^2+4\lambda-5=(\lambda+5)(\lambda-1)=0[/tex]

The eigenvalues are thus [tex]\lambda_1=-5[/tex] and [tex]\lambda_2=1[/tex].

For the eigenvalue [tex]\lambda_1[/tex], the corresponding eigenvector [tex]\eta_1[/tex] satisfies

[tex]\begin{bmatrix}-1&4\\\\-\frac74&7\end{bmatrix}\begin{bmatrix}\eta_{1,1}\\\eta_{1,2}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]
[tex]\implies\eta_{1,1}=4\eta_{1,2}[/tex]

so that we can choose [tex]\eta_1=\begin{bmatrix}4\\1\end{bmatrix}[/tex].

For [tex]\lamda_2=1[/tex], we have

[tex]\begin{bmatrix}-7&4\\\\-\frac74&1\end{bmatrix}\begin{bmatrix}\eta_{2,1}\\\eta_{2,2}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]
[tex]\implies7\eta_{2,1}=4\eta_{2,2}[/tex]

and we can choose [tex]\eta_2=\begin{bmatrix}4\\7\end{bmatrix}[/tex] for the corresponding eigenvector.

Then the general solution to the ODE system is given by

[tex]\begin{bmatrix}x(t)\\y(t)\end{bmatrix}=C_1\begin{bmatrix}4\\1\end{bmatrix}e^{-5t}+\C_2\begin{bmatrix}4\\7\end{bmatrix}e^t[/tex]