Respuesta :
[tex]\displaystyle\int_{-1}^3\sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
[tex]x=6t+5\implies\dfrac{\mathrm dx}{\mathrm dt}=6[/tex]
[tex]y=7-7t\implies\dfrac{\mathrm dy}{\mathrm dt}=-7[/tex]
[tex]\displaystyle\int_{-1}^3\sqrt{36+49}\,\mathrm dt=\sqrt{85}(3-(-1))=4\sqrt{85}[/tex]
[tex]x=6t+5\implies\dfrac{\mathrm dx}{\mathrm dt}=6[/tex]
[tex]y=7-7t\implies\dfrac{\mathrm dy}{\mathrm dt}=-7[/tex]
[tex]\displaystyle\int_{-1}^3\sqrt{36+49}\,\mathrm dt=\sqrt{85}(3-(-1))=4\sqrt{85}[/tex]
The arc length of the curve on the given interval −1 ≤ t ≤ 3 with parametric equation x = 6t + 5 and y = 7 − 7t −1 is 4√85.
What is integration?
It is the reverse of differentiation.
The arc length of the curve on the given interval.
Parametric equations interval
x = 6t + 5, −1 ≤ t ≤ 3
y = 7 − 7t, −1 ≤ t ≤ 3
We know that the parametric form of the arc length will be given as
[tex]\rm \int _{-1}^3 \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2} \ dt[/tex]
Then we have
[tex]\rm \dfrac{dx}{dt} = 6\\\\\dfrac{dy}{dt} = -7[/tex]
Then the arc length will be
[tex]\rightarrow \rm \int _{-1}^3 \sqrt{(3)^2 + (-7)^2} \ dt\\\\\rightarrow \sqrt{85} [t]_{-1}^3 \\\\\rightarrow 4 \sqrt{85}[/tex]
More about the integration link is given below.
https://brainly.com/question/18651211