Respuesta :

Proof by contradiction.

Let assume that when [tex]x[/tex] is an irrational number, then [tex]\dfrac{1}{x}[/tex] is a rational number.

If [tex]\dfrac{1}{x}[/tex] is a rational number, then it can be expressed as a fraction [tex]\dfrac{a}{b}[/tex] where [tex]a,b\in\mathbb{Z}[/tex].

[tex]\dfrac{1}{x}=\dfrac{a}{b} \Rightarrow x=\dfrac{b}{a}[/tex]

Since [tex]a,b\in\mathbb{Z}[/tex], the number [tex]x=\dfrac{b}{a}[/tex] is also a rational number. But this contardicts our initial assumption that [tex]x[/tex] is an irrational number. Therefore [tex]\dfrac{1}{x}[/tex] must be an irrational number.