Respuesta :
Answer:
[tex]\sf \dfrac{d(y)}{dx} = -\dfrac{y}{x}[/tex]
Step-by-step explanation:
Let's find the derivative of [tex]\sf y[/tex] with respect to [tex]\sf x[/tex] in the equation [tex]\sf 2^{xy} = 1[/tex]. We'll use logarithmic differentiation to solve this problem.
Starting with the given equation:
[tex]\sf 2^{xy} = 1[/tex]
Take the natural logarithm (ln) of both sides:
[tex]\sf \ln(2^{xy}) = \ln(1)[/tex]
Apply the power rule and the logarithm law:[tex]\sf ln(x^a) = a \ln(x)[/tex] and [tex]\sf \ln(x) = \dfrac{1}{x}[/tex]
[tex]\sf xy \ln(2) = 0[/tex]
Now, differentiate both sides with respect to [tex]\sf x[/tex], applying the product rule:
[tex]\sf \dfrac{d}{dx}(xy \ln(2)) = \dfrac{d}{dx}(0)[/tex]
Use the product rule [tex]\sf \dfrac{d}{dx}(uv) = u'\cdot v + u \cdot v'[/tex]:
[tex]\sf y \ln(2) + x \cdot \dfrac{d(y)}{dx} \cdot \ln(2) = 0[/tex]
Now, isolate [tex]\sf \dfrac{dy}{dx}[/tex]:
[tex]\sf x \cdot \dfrac{d(y)}{dx} \cdot \ln(2) = -y \ln(2)[/tex]
Divide both sides by [tex]\sf x \ln(2)[/tex]:
[tex]\sf \dfrac{d(y)}{dx} = -\dfrac{y}{x}[/tex]
So, the derivative of [tex]\sf y[/tex] with respect to [tex]\sf x[/tex] is [tex]\sf -\dfrac{y}{x}[/tex].
Answer:
[tex]\dfrac{\text{d}y}{\text{d}x}=-\dfrac{y}{x}[/tex]
Step-by-step explanation:
To find the derivative of y with respect to x given the equation [tex]2^{xy} = 1[/tex], we can use logarithmic differentiation.
First, take the natural logarithm (ln) of both sides of the equation:
[tex]\ln(2^{xy}) = \ln(1)[/tex]
Now, apply the power rule to simplify the left side:
[tex]xy \ln(2) = \ln(1)[/tex]
Since ln(1) = 0, we get:
[tex]xy \ln(2) = 0[/tex]
Now, differentiate both sides with respect to x:
[tex]\dfrac{\text{d}}{\text{d}x}(xy \ln(2)) = \dfrac{\text{d}}{\text{d}x}(0)[/tex]
Apply the product rule of differentiation on the left side.
[tex]\boxed{\begin{array}{c}\underline{\sf Product\;Rule\;for\;Differentiation}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]
[tex]\textsf{Let}\;\;u=x \implies \dfrac{\text{d}u}{\text{d}x}=1[/tex]
[tex]\textsf{Let}\;\;v=y\ln(2) \implies \dfrac{\text{d}v}{\text{d}x}=\ln(2)\dfrac{\text{d}y}{\text{d}x}[/tex]
Therefore:
[tex]\begin{aligned}\dfrac{\text{d}}{\text{d}x}(xy \ln(2)) &= x\cdot \ln(2)\dfrac{\text{d}y}{\text{d}x}+y\ln(2) \cdot 1\\\\&=x\ln(2)\dfrac{\text{d}y}{\text{d}x}+y\ln(2)\end{aligned}[/tex]
So the differentiated equation is:
[tex]x\ln(2)\dfrac{\text{d}y}{\text{d}x}+y\ln(2)=0[/tex]
Now, solve for dy/dx:
[tex]x\ln(2)\dfrac{\text{d}y}{\text{d}x}=-y\ln(2)[/tex]
[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{-y\ln(2)}{x\ln(2)}[/tex]
[tex]\dfrac{\text{d}y}{\text{d}x}=-\dfrac{y}{x}[/tex]
So, the derivative of y with respect to x if [tex]2^{xy} = 1[/tex] is:
[tex]\Large\boxed{\boxed{\dfrac{\text{d}y}{\text{d}x}=-\dfrac{y}{x}}}[/tex]