Respuesta :

msm555

Answer:

[tex]\sf \dfrac{d(y)}{dx} = -\dfrac{y}{x}[/tex]

Step-by-step explanation:

Let's find the derivative of [tex]\sf y[/tex] with respect to [tex]\sf x[/tex] in the equation [tex]\sf 2^{xy} = 1[/tex]. We'll use logarithmic differentiation to solve this problem.

Starting with the given equation:

[tex]\sf 2^{xy} = 1[/tex]

Take the natural logarithm (ln) of both sides:

[tex]\sf \ln(2^{xy}) = \ln(1)[/tex]

Apply the power rule and the logarithm law:[tex]\sf ln(x^a) = a \ln(x)[/tex] and [tex]\sf \ln(x) = \dfrac{1}{x}[/tex]

[tex]\sf xy \ln(2) = 0[/tex]

Now, differentiate both sides with respect to [tex]\sf x[/tex], applying the product rule:

[tex]\sf \dfrac{d}{dx}(xy \ln(2)) = \dfrac{d}{dx}(0)[/tex]

Use the product rule [tex]\sf \dfrac{d}{dx}(uv) = u'\cdot v + u \cdot v'[/tex]:

[tex]\sf y \ln(2) + x \cdot \dfrac{d(y)}{dx} \cdot \ln(2) = 0[/tex]

Now, isolate [tex]\sf \dfrac{dy}{dx}[/tex]:

[tex]\sf x \cdot \dfrac{d(y)}{dx} \cdot \ln(2) = -y \ln(2)[/tex]

Divide both sides by [tex]\sf x \ln(2)[/tex]:

[tex]\sf \dfrac{d(y)}{dx} = -\dfrac{y}{x}[/tex]

So, the derivative of [tex]\sf y[/tex] with respect to [tex]\sf x[/tex] is [tex]\sf -\dfrac{y}{x}[/tex].

Answer:

[tex]\dfrac{\text{d}y}{\text{d}x}=-\dfrac{y}{x}[/tex]

Step-by-step explanation:

To find the derivative of y with respect to x given the equation [tex]2^{xy} = 1[/tex], we can use logarithmic differentiation.

First, take the natural logarithm (ln) of both sides of the equation:

[tex]\ln(2^{xy}) = \ln(1)[/tex]

Now, apply the power rule to simplify the left side:

[tex]xy \ln(2) = \ln(1)[/tex]

Since ln(1) = 0, we get:

[tex]xy \ln(2) = 0[/tex]

Now, differentiate both sides with respect to x:

[tex]\dfrac{\text{d}}{\text{d}x}(xy \ln(2)) = \dfrac{\text{d}}{\text{d}x}(0)[/tex]

Apply the product rule of differentiation on the left side.

[tex]\boxed{\begin{array}{c}\underline{\sf Product\;Rule\;for\;Differentiation}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]

[tex]\textsf{Let}\;\;u=x \implies \dfrac{\text{d}u}{\text{d}x}=1[/tex]

[tex]\textsf{Let}\;\;v=y\ln(2) \implies \dfrac{\text{d}v}{\text{d}x}=\ln(2)\dfrac{\text{d}y}{\text{d}x}[/tex]

Therefore:

[tex]\begin{aligned}\dfrac{\text{d}}{\text{d}x}(xy \ln(2)) &= x\cdot \ln(2)\dfrac{\text{d}y}{\text{d}x}+y\ln(2) \cdot 1\\\\&=x\ln(2)\dfrac{\text{d}y}{\text{d}x}+y\ln(2)\end{aligned}[/tex]

So the differentiated equation is:

[tex]x\ln(2)\dfrac{\text{d}y}{\text{d}x}+y\ln(2)=0[/tex]

Now, solve for dy/dx:

[tex]x\ln(2)\dfrac{\text{d}y}{\text{d}x}=-y\ln(2)[/tex]

[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{-y\ln(2)}{x\ln(2)}[/tex]

[tex]\dfrac{\text{d}y}{\text{d}x}=-\dfrac{y}{x}[/tex]

So, the derivative of y with respect to x if [tex]2^{xy} = 1[/tex] is:

[tex]\Large\boxed{\boxed{\dfrac{\text{d}y}{\text{d}x}=-\dfrac{y}{x}}}[/tex]