please solve for brainliest!

Answer:
[tex]m^{4}[/tex] + 2m²n² - m²n - 2n³
Step-by-step explanation:
(m² - n)(m² + 2n²)
= [tex]m^{4}[/tex]+ 2m²n² - m²n - 2n³
So, the answer is [tex]m^{4}[/tex]+ 2m²n² - m²n - 2n³.
Answer:
[tex]\sf m^4 + 2m^2n^2 - m^2n - 2n^3[/tex]
Step-by-step explanation:
To expand the given polynomial [tex]\sf (m^2 - n)(m^2 + 2n^2)[/tex], we will use the distributive property (FOIL). FOIL stands for First, Outer, Inner, Last, and it's a method for multiplying two binomials.
Let's apply it to the given expression:
[tex]\sf \begin{aligned} & \sf (m^2 - n)(m^2 + 2n^2) \\ & \sf = m^2 \cdot m^2 + m^2 \cdot 2n^2 - n \cdot m^2 - n \cdot 2n^2 \\ & \sf = m^4 + 2m^2n^2 - m^2n - 2n^3 \end{aligned}[/tex]
So, the expanded form of [tex]\sf (m^2 - n)(m^2 + 2n^2)[/tex] is:
[tex]\sf m^4 + 2m^2n^2 - m^2n - 2n^3[/tex]