A rectangle has a length of the cube root of 81 inches and a width of 3 to the 2 over 3 power inches. Find the area of the rectangle.

3 to the 2 over 3 power inches squared
3 to the 8 over 3 power inches squared
9 inches squared
9 to the 2 over 3 power inches squared

Respuesta :

[tex]A= \sqrt[3]{81}*3^{ \frac{2}{3} }= \sqrt[3]{3^4}*3^{ \frac{2}{3} } = 3^{ \frac{4}{3} }*3^{ \frac{2}{3} }=3^{ \frac{4}{3} + \frac{2}{3} }=3^2=9 \ [/tex]

9 inches squared

Answer:

9 square inches.

Step-by-step explanation:

We have been given that a rectangle has a length of the [tex]\sqrt[3]{81}[/tex] inches and a width of [tex]3^{\frac{2}{3}}[/tex] power inches. We are asked to find the area of given rectangle.

We know that area of rectangle in length times width of rectangle.

[tex]\text{Area of rectangle}=\sqrt[3]{81}\times 3^{\frac{2}{3}}[/tex]

We can write 81 as [tex]3^4[/tex] as:

[tex]\text{Area of rectangle}=\sqrt[3]{3^4}\times 3^{\frac{2}{3}}[/tex]

Using exponent rule [tex]\sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex], we can write [tex]\sqrt[3]{3^4}=3^{\frac{4}{3}}[/tex].

[tex]\text{Area of rectangle}=3^{\frac{4}{3}}\times 3^{\frac{2}{3}}[/tex]

Using exponent rule [tex]a^b\cdot a^c=a^{b+c}[/tex], we will get:

[tex]\text{Area of rectangle}=3^{\frac{4}{3}+\frac{2}{3}}[/tex]

[tex]\text{Area of rectangle}=3^{\frac{4+2}{3}}[/tex]

[tex]\text{Area of rectangle}=3^{\frac{6}{3}}[/tex]

[tex]\text{Area of rectangle}=3^{2}[/tex]

[tex]\text{Area of rectangle}=9[/tex]

Therefore, the area of given rectangle is 9 square inches.