[tex]\bf cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)}
\qquad csc(\theta)=\cfrac{1}{sin(\theta)}
\\\\\\
sin^2(\theta)+cos^2(\theta)=1\\\\
-------------------------------\\\\[/tex]
[tex]\bf \cfrac{cos(\theta )cot(\theta )}{1-sin(\theta )}-1=csc(\theta )\\\\
-------------------------------\\\\
\cfrac{cos(\theta )\cdot \frac{cos(\theta )}{sin(\theta )}}{1-sin(\theta )}-1\implies \cfrac{\frac{cos^2(\theta )}{sin(\theta )}}{\frac{1-sin(\theta )}{1}}-1\implies
\cfrac{cos^2(\theta )}{sin(\theta )}\cdot \cfrac{1}{1-sin(\theta )}-1
\\\\\\
\cfrac{cos^2(\theta )}{sin(\theta )[1-sin(\theta )]}-1\implies
\cfrac{cos^2(\theta )-1[sin(\theta )[1-sin(\theta )]]}{sin(\theta )[1-sin(\theta )]}[/tex]
[tex]\bf \cfrac{cos^2(\theta )-1[sin(\theta )-sin^2(\theta )]}{sin(\theta )[1-sin(\theta )]}\implies \cfrac{cos^2(\theta )-sin(\theta )+sin^2(\theta )}{sin(\theta )[1-sin(\theta )]}
\\\\\\
\cfrac{cos^2(\theta )+sin^2(\theta )-sin(\theta )}{sin(\theta )[1-sin(\theta )]}\implies \cfrac{\underline{1-sin(\theta )}}{sin(\theta )\underline{[1-sin(\theta )]}}
\\\\\\
\cfrac{1}{sin(\theta )}\implies csc(\theta )[/tex]