The solution would be like this for this specific problem:
H0: p = p0, or
H0: p ≥ p0, or
H0: p ≤ p0
find the test statistic z = (pHat - p0) / sqrt(p0 * (1-p0) / n)
where pHat = X / n
The p-value of the test is
the area under the normal curve that is in agreement with the alternate
hypothesis.
H1: p ≠ p0; p-value is the area in the tails greater than |z|
H1: p < p0; p-value is the area to the left of z
H1: p > p0; p-value is the area to the right of z
Hypothesis equation:
H0: p ≥ 0.67 vs. H1: p < 0.67
The test statistic is:
z = ( 0.5526316 - 0.67 ) / ( √ ( 0.67 * (1 - 0.67 ) / 38 )
z = -1.538681
The p-value = P( Z < z
)
= P( Z < -1.538681 )
= 0.0619