[tex]\mathbf a(t)=8t\,\mathbf i+\sin t\,\mathbf j+\cos2t\,\mathbf k[/tex]
[tex]\mathbf v(t)=\displaystyle\int\mathbf a(t)\,\mathrm dt[/tex]
[tex]\mathbf v(t)=(4t^2+C_1)\,\mathbf i+(-\cos t+C_2)\,\mathbf j+\left(\dfrac12\sin2t+C_3\right)\,\mathbf k[/tex]
[tex]\mathbf v(0)=\mathbf i[/tex]
[tex]\implies\begin{cases}4(0)^2+C_1=1\\-\cos0+C_2=0\\\frac12\sin2(0)+C_3=0\end{cases}\implies C_1=1,C_2=1,C_3=0[/tex]
[tex]\mathbf v(t)=(4t^2+1)\,\mathbf i+(1-\cos t)\,\mathbf j+\dfrac12\sin2t\,\mathbf k[/tex]
[tex]\mathbf r(t)=\displaystyle\int\mathbf v(t)\,\mathrm dt[/tex]
[tex]\mathbf r(t)=\left(\dfrac43t^3+t+C_4\right)\,\mathbf i+(t-\sin t+C_5)\,\mathbf j+\left(-\dfrac12\cos2t+C_6\right)\,\mathbf k[/tex]
[tex]\mathbf r(0)=\mathbf j[/tex]
[tex]\implies\begin{cases}\frac43(0)^2+0+C_4=0\\0-\sin0+C_5=1\\-\frac12\cos2(0)+C_6=0\end{cases}\implies C_4=0,C_5=1,C_6=\dfrac12[/tex]
[tex]\mathbf r(t)=\left(\dfrac43t^3+t\right)\,\mathbf i+(t-\sin t+1)\,\mathbf j+\left(\dfrac12-\dfrac12\cos2t\right)\,\mathbf k[/tex]