Respuesta :
You just have to simplify that point-slope equation in order to get it into slope-intercept:
[tex]y-3= \frac{1}{2} (x-1)[/tex]
[tex]y-3= \frac{1}{2}x- \frac{1}{2} [/tex]
[tex]y= \frac{1}{2} x- \frac{1}{2} +3[/tex]
[tex]y= \frac{1}{2} x- \frac{1}{2} + \frac{6}{2} [/tex]
[tex]y= \frac{1}{2} x+ \frac{5}{2} [/tex]
[tex]y-3= \frac{1}{2} (x-1)[/tex]
[tex]y-3= \frac{1}{2}x- \frac{1}{2} [/tex]
[tex]y= \frac{1}{2} x- \frac{1}{2} +3[/tex]
[tex]y= \frac{1}{2} x- \frac{1}{2} + \frac{6}{2} [/tex]
[tex]y= \frac{1}{2} x+ \frac{5}{2} [/tex]
Answer:
[tex]y=\frac{x}{2}+\frac{5}{2}[/tex]
Step-by-step explanation:
Hello
thanks for asking this question, I think I can help you with this
if you have the point-slope form of the equation of a line, just isolate "y" to find the slope-intercept form
Step 1
[tex]y-3=\frac{1}{2} (x-1)\\\\y-3=\frac{x}{2}-\frac{1}{2} \\Add\ 3\ in\ both sides\\\\y-3+3=\frac{x}{2}-\frac{1}{2} +3\\y=\frac{x}{2}-\frac{1}{2}+3\\y=\frac{x}{2}+\frac{5}{2}[/tex]
so the answer is
[tex]y=\frac{x}{2}+\frac{5}{2}[/tex]
where 1/2 is the slope, and 5/2 is the intercept with y-axis
I really hope it helps , Have a great day.