Respuesta :
By the Pythagorean theorem:
#1
[tex]t= \sqrt{13^2-12^2}= \sqrt{169-144}= \sqrt{25}=5 [/tex]
#2
[tex]a= \sqrt{12^2-9^2}= \sqrt{144-81}= \sqrt{63}= \sqrt{9*7}=3 \sqrt{7} [/tex]
#3
[tex]x= \sqrt{6^2+9^2}= \sqrt{36+81}= \sqrt{117}= \sqrt{9*13}=3 \sqrt{13} [/tex]
#1
[tex]t= \sqrt{13^2-12^2}= \sqrt{169-144}= \sqrt{25}=5 [/tex]
#2
[tex]a= \sqrt{12^2-9^2}= \sqrt{144-81}= \sqrt{63}= \sqrt{9*7}=3 \sqrt{7} [/tex]
#3
[tex]x= \sqrt{6^2+9^2}= \sqrt{36+81}= \sqrt{117}= \sqrt{9*13}=3 \sqrt{13} [/tex]
Answer:
i) t = 5
ii) a = 3√7
iii) x =3√13
Step-by-step explanation:
We have right triangles.
Know the two sides of the triangle and need to find the third missing side.
In order to find the third side of the right triangle, we use pythagoras theorem.
It is,
(Hypotenuse)² = (base)² + (height)²
i)
13² = 12² + t²
169 = 144 + t²
t² = 25
t = 5.
ii)
12² = 9² + a²
144 = 81 + a²
144 - 81 = a²
a² = 63
a = √63
iii)
x² = 9² + 6²
x² = 81 + 36
x² = 117
x = √117
x = 3√13