Which function represents g(x), a reflection of f(x) =2/5 (10)x across the x-axis? g(x) =-2/5 (10)x g(x) =-2/5(1/10)^x g(x) =2/5(1/10)^-x g(x) =2/5 (10)-x

Respuesta :

all values of f(x)  will change from positive to negative if you reflect in x-axis.

So the first choice is the correct one.

Answer:

A. [tex]g(x)=-\frac{2}{5}(10)^x[/tex].

Step-by-step explanation:

We are given the function [tex]f(x)=\frac{2}{5}(10)^x[/tex].

Now, g(x) is obtained by reflecting the function f(x) over x-axis.

Reflection of f(x) over x-axis changes f(x) to -f(x).

So, we get,

[tex]g(x)=-f(x)[/tex]

i.e. [tex]g(x)=-\frac{2}{5}(10)^x[/tex]

Thus, the reflected function is [tex]g(x)=-\frac{2}{5}(10)^x[/tex].

So, option A is correct.