What changes could you make to values assigned to outcomes to make the game fair? Prove that the game would be fair using expected values. Thank you!

What changes could you make to values assigned to outcomes to make the game fair Prove that the game would be fair using expected values Thank you class=

Respuesta :

For a definite answer, let us take a look at the given circle graph. You are given that landing on a blue sector will give 3 points, landing on a yellow sector will give 1 point, purple sector will give 0 points and red sector will give -1 point. You are asked to find the probability of landing -1, 0, 1 and 3 points. There are a total of 7 pie graphs in the circle.

For -1 point, you know that only a red sector will give you a negative one point. In the circle graph, there are two red portions. So you will have a probability of 2/7.

For the 0 point, you know that only a purple sector will give you zero point. In the circle graph, there are two purple portions. So you will have a probability of 2/7.

For the 1 point, you know that only a yellow sector will give you one point. In the circle graph, there are two yellow portions. So you will have a probability of 2/7.

For the 3 points, you know that only a blue sector will give you three points. In the circle graph, only one blue portion is shown. So you will have a probability of 1/7.

Answer with explanation:

A game will be fair , if there is equal chance of winning and losing.

→The game would be fair , if

Landing on Blue sector gives 3.5 points.

Then the, Expected value will be

   [tex]E(x_{i})=x_{i} \times P(x_{i})\\\\E(x)=x_{1} \times P(x_{1})+x_{2} \times P(x_{2})+x_{3} \times P(x_{3})+x_{4} \times P(x_{4})\\\\E(x)=-1 *\frac{2}{7}+(0) *\frac{2}{7}+(1) *\frac{2}{7}+(3.5) *\frac{1}{7}\\\\E(x)=(3.5) *\frac{1}{7}\\\\E(x)=0.50[/tex]

→→By Assigning, Blue sector =3.5 points, the game will become fair, Gives, E(x)=0.50.