Respuesta :
Answer:
Option (d) is correct.
The solution of x for the given equation [tex]4log_{12}2\:+\:log_{12}x=log_{12}96[/tex] is 6.
Step-by-step explanation:
Given : [tex]4log_{12}2\:+\:log_{12}x=log_{12}96[/tex]
We have to solve for x.
Consider the given equation [tex]4log_{12}2\:+\:log_{12}x=log_{12}96[/tex]
Subtract [tex]4\log _{12}\left(2\right)[/tex] both side, we have,
[tex]4\log _{12}\left(2\right)+\log _{12}\left(x\right)-4\log _{12}\left(2\right)=\log _{12}\left(96\right)-4\log _{12}\left(2\right)[/tex]
Simplify, we have,
[tex]\log _{12}\left(x\right)=\log _{12}\left(96\right)-4\log _{12}\left(2\right)[/tex]
Consider Right side of above,
[tex]\log _{12}\left(96\right)-4\log _{12}\left(2\right)[/tex]
Apply log rule, [tex]\:a\log _c\left(b\right)=\log _c\left(b^a\right)[/tex]
[tex]4\log _{12}\left(2\right)=\log _{12}\left(2^4\right)[/tex]
[tex]=\log _{12}\left(96\right)-\log _{12}\left(2^4\right)[/tex]
Again applying log rule, [tex]\log _c\left(a\right)-\log _c\left(b\right)=\log _c\left(\frac{a}{b}\right)[/tex]
[tex]\log _{12}\left(96\right)-\log _{12}\left(2^4\right)=\log _{12}\left(\frac{96}{2^4}\right)[/tex]
Simplify, we have,
[tex]=\log _{12}\left(6\right)[/tex]
[tex]\log _{12}\left(x\right)=\log _{12}\left(6\right)[/tex]
when log have same base,
[tex]\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)[/tex]
Thus, x = 6
Thus, The solution of x for the given equation [tex]4log_{12}2\:+\:log_{12}x=log_{12}96[/tex] is 6.