Respuesta :
Answer:
The area of the banquet stage is [tex]\sf 675 \, \textsf{m}^2 [/tex]
Step-by-step explanation:
Let's denote the length of the square banquet hall as [tex]\sf L [/tex]. The area of a square is given by the formula:
[tex]\sf \textsf{Area} = L^2 [/tex]
Given that the length of the square banquet hall is [tex]\sf 30 [/tex] meters, we can substitute [tex]\sf L = 30 [/tex] into the formula:
[tex]\sf \textsf{Area} = (30)^2 [/tex]
[tex]\sf \textsf{Area} = 900 \, \textsf{m}^2 [/tex]
Now, since [tex]\sf \dfrac{3}{4} [/tex] of the area is occupied by the banquet stage, we can find the area of the stage by multiplying the total area by [tex]\sf \dfrac{3}{4} [/tex]:
[tex]\sf \textsf{Area\_stage} = \dfrac{3}{4} \times 900 \, \textsf{m}^2 [/tex]
[tex]\sf \textsf{Area\_stage} = \dfrac{3}{4} \times 900 [/tex]
[tex]\sf \textsf{Area\_stage} = 675 \, \textsf{m}^2 [/tex]
So, the area of the banquet stage is [tex]\sf 675 \, \textsf{m}^2 [/tex].
Answer:
675 m²
Step-by-step explanation:
The area of a square is found by squaring its side length:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a square}}\\\\\Large\text{$A=s^2$}\\\\\textsf{where :}\\\phantom{ww}\bullet\;\textsf{$A$ is the area.}\\\phantom{ww}\bullet\;\textsf{$s$ is the side length}.\end{array}}[/tex]
Given that the area of the banquet stage is 3/4 of the area of the square banquet hall, then:
[tex]\textsf{Area of banquet stage}=\dfrac{3}{4}s^2[/tex]
Since the side length of the square banquet hall is 30 m, we can find the area of the stage by substituting s = 30 into the equation:
[tex]\begin{aligned}\textsf{Area of banquet stage}&=\dfrac{3}{4}(30)^2\\\\&=\dfrac{3}{4}\cdot 900\\\\&=\dfrac{2700}{4}\\\\&=675\; \sf m^2\end{aligned}[/tex]
Therefore, the area of the banquet stage:
[tex]\huge\boxed{\boxed{675\; \sf m^2}}[/tex]
