Assuming you're just computing the volume, i.e.
[tex]\displaystyle\iiint_E\mathrm dV[/tex]
we should convert to cylindrical coordinates first, setting
[tex]\begin{cases}x=r\cos\theta\\y=r\sin\theta\\z=\zeta\end{cases}[/tex]
so that the volume is given by
[tex]\displaystyle\iiint_E\mathrm dx\,\mathrm dy\,\mathrm dz=\int_{\theta=0}^{\theta=2\pi}\int_{r=1}^{r=4}\int_{\zeta=0}^{\zeta=r\sin\theta+4}r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta[/tex]
which has a value of [tex]60\pi[/tex].