Respuesta :
with every step the previous value gets multiplied by -1/4
[tex]x_n=x_{n-1}* \frac{-1}{4} , x_1=-80[/tex]
or
[tex]x_n=-80*(\frac{-1}{4})^{n-1} [/tex]
[tex]x_n=x_{n-1}* \frac{-1}{4} , x_1=-80[/tex]
or
[tex]x_n=-80*(\frac{-1}{4})^{n-1} [/tex]
Answer:
[tex]x_{n+1}=-\frac{x_{n}}{4}[/tex]
Step-by-step explanation:
We can get geometric sequence dividing each term by -4
So we will have:
[tex]x_{n+1}=\frac{x_{n}}{-4}=-\frac{x_{n}}{4}[/tex]
We can prove it putting the first value in this recursive equation:
x₁=-80
n = 1
[tex]x_{2}=-\frac{x_{1}}{4}=-\frac{-80}{4}=20[/tex]
If x₂ = 20, the next value will be:
[tex]x_{3}=-\frac{x_{2}}{4}=-\frac{20}{4}=-5[/tex]
I hope it helps you!
