Answer:
[tex]\sqrt{61}[/tex]
Step-by-step explanation:
The distance between two complex numbers in the form z = a + bi can be found using the distance formula:
[tex]\boxed{\begin{array}{l}\underline{\sf Distance \;Formula\; (complex \;numbers)}\\\\d=\sqrt{(a_2-a_1)^2+(b_2-b_1)^2}\\\\\textsf{where:}\\ \phantom{ww}\bullet\;\;d\;\textsf{is the distance between two complex numbers.} \\\phantom{ww}\bullet\;\;\textsf{$(a_1+b_1i)$ and $(a_2+b_2i)$ are the two complex numbers.}\end{array}}[/tex]
Given that the two complex numbers are z₁ = -12 - 17i and z₂ = -6 - 12i, then:
[tex]a_1=-12[/tex]
[tex]b_1=-17[/tex]
[tex]a_2=-6[/tex]
[tex]b_2=-12[/tex]
Substitute these values into the distance formula:
[tex]\begin{aligned}d&=\sqrt{(-6-(-12))^2+(-12-(-17))^2}\\\\d&=\sqrt{(-6+12)^2+(-12+17)^2}\\\\d&=\sqrt{(6)^2+(5)^2}\\\\d&=\sqrt{36+25}\\\\d&=\sqrt{61}\end{aligned}[/tex]
Therefore, the exact distance between the complex numbers z₁ = -12 - 17i and z₂ = -6 - 12i is:
[tex]\huge\boxed{\boxed{\sqrt{61}}}[/tex]
The distance is 7.81 rounded to two decimal places.