Respuesta :

For the side lengths to create a right triangle they need to satisfy Pythagorean Theorem, so [tex]a^2 + b^2 = c^2[/tex] where [tex]a \ \textless \ c[/tex] and [tex]b \ \textless \ c[/tex].

We can just perform this check on all the sides.

1) [tex]7^2 + 8^2 = 49 + 64 = 113 \neq 15^2 [/tex] Not a right triangle
2) [tex]4^2 + 10^2 = 16 + 100 = 116 \neq 11^2[/tex] Not a right triangle
3) [tex]8^2 + 7^2 = 64 + 49 = 113 = (\sqrt{113})^2[/tex] Right triangle
4) [tex]4^2 + 4^2 = 16 + 16 = 32 = (\sqrt{32})^2[/tex] Right triangle
5) [tex]4^2 + 4^2 = 16 + 16 = 32 \neq (\sqrt{24})^2[/tex] Not a right triangle

There you go :P
Right Triangles: (Apply Pythagoras)

8,7,√113 [( 8² + 7² = (√113)² ↔ 64 + 49 = 113]

4,4,√32 [( 4² + 4² = (√32)² ↔ 16 + 16 = 32]

Not right triangles (all the remaining others):

7,8,15 [(15² ≠ 7²+8²) ↔ (225 ≠ 49+64)] so not a right triangle.
4,10,11 [(11² ≠ 4²+10²) ↔ (121 ≠ 16+100)] so not a right triangle
4,4,√24 [(√24)² ≠ 4²+4²) ↔ (24 ≠ 16+16)] so not a right triangle


RELAXING NOICE
Relax