Respuesta :

[tex]\dfrac1k-\dfrac1{k+1}=\dfrac{k+1}{k(k+1)}-\dfrac k{k(k+1)}=\dfrac{k+1-k}{k(k+1)}=\dfrac1{k(k+1)}[/tex]

This means we can write the given sum as a telescoping series:

[tex]\displaystyle\sum_{k=1}^{2017}\frac1{k(k+1)}=\sum_{k=1}^{2017}\left(\frac1k-\frac1{k+1}\right)[/tex]
[tex]=\left(1-\dfrac12\right)+\left(\dfrac12-\dfrac13\right)+\cdots+\left(\dfrac1{2015}-\dfrac1{2016}\right)+\left(\dfrac1{2016}-\dfrac1{2017}\right)[/tex]

All the intermediate terms cancel, leaving you with

[tex]\displaystyle\sum_{k=1}^{2017}\frac1{k(k+1)}=1-\frac1{2017}=\frac{2017}{2018}[/tex]
RELAXING NOICE
Relax