Respuesta :

The cone equation gives

[tex]z=\sqrt{x^2+y^2}\implies z^2=x^2+y^2[/tex]

which means that the intersection of the cone and sphere occurs at

[tex]x^2+y^2+(x^2+y^2)=9\implies x^2+y^2=\dfrac92[/tex]

i.e. along the vertical cylinder of radius [tex]\dfrac3{\sqrt2}[/tex] when [tex]z=\dfrac3{\sqrt2}[/tex].

We can parameterize the spherical cap in spherical coordinates by

[tex]\mathbf r(\theta,\varphi)=\langle3\cos\theta\sin\varphi,3\sin\theta\sin\varphi,3\cos\varphi\right\rangle[/tex]

where [tex]0\le\theta\le2\pi[/tex] and [tex]0\le\varphi\le\dfrac\pi4[/tex], which follows from the fact that the radius of the sphere is 3 and the height at which the sphere and cone intersect is [tex]\dfrac3{\sqrt2}[/tex]. So the angle between the vertical line through the origin and any line through the origin normal to the sphere along the cone's surface is

[tex]\varphi=\cos^{-1}\left(\dfrac{\frac3{\sqrt2}}3\right)=\cos^{-1}\left(\dfrac1{\sqrt2}\right)=\dfrac\pi4[/tex]

Now the surface area of the cap is given by the surface integral,

[tex]\displaystyle\iint_{\text{cap}}\mathrm dS=\int_{\theta=0}^{\theta=2\pi}\int_{\varphi=0}^{\varphi=\pi/4}\|\mathbf r_u\times\mathbf r_v\|\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle\int_{u=0}^{u=2\pi}\int_{\varphi=0}^{\varphi=\pi/4}9\sin v\,\mathrm dv\,\mathrm du[/tex]
[tex]=-18\pi\cos v\bigg|_{v=0}^{v=\pi/4}[/tex]
[tex]=18\pi\left(1-\dfrac1{\sqrt2}\right)[/tex]
[tex]=9(2-\sqrt2)\pi[/tex]
ACCESS MORE