Respuesta :
Answer: spontaneous only at high temperature
Explanation: [tex]C_2H_6(g)\rightarrow C_2H_4(g)+H_2(g)[/tex]
The Gibbs free energy change is given by:
[tex]\Delta G=\Delta H-T\Delta S[/tex]
[tex]\Delta G[/tex] = Gibbs free energy
when [tex]\DeltaG[/tex]= +ve, reaction is non spontaneous
[tex]\DeltaG[/tex]= -ve, reaction is spontaneous
[tex]\DeltaG[/tex]= 0, reaction is in equilibrium
[tex]\Delta H[/tex] = enthalpy change = endothermic = +137 KJ
[tex]\Delta S[/tex] = entropy change = +120 J/K
[tex]\Delta G=(+)-T(+)[/tex]
[tex]\Delta G=(+)(-ve)[/tex]
Now [tex]\Delta G= -ve[/tex] when [tex]T\Delta S[/tex] has more value than [tex]\Delta H[/tex]
Thus reaction is spontaneous at high temperatures.
When ΔH is positive and ΔS is positive, the reaction is spontaneous at high temperature.
In order to answer the question, we must define he following terms;
- Exothermic reaction: This is a reaction in which the enthalpy change is negative
- Endothermic reaction: This is a reaction in which he enthalpy change is positive
Let us recall that;
ΔG = ΔH - TΔS
Hence, when ΔH is positive and ΔS is positive, the reaction is spontaneous at high temperature.
Learn more about spontaneous reaction: https://brainly.com/question/1217654