Respuesta :
Let [tex]H[/tex] denote the helicoid parameterized by
[tex]\mathbb r(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+v\,\mathbf k[/tex]
for [tex]0\le u\le1[/tex] and [tex]0\le v\le9\pi[/tex]. The surface area is given by the surface integral,
[tex]\displaystyle\iint_H\mathrm dS=\iint_H\|\mathbf r_u\times\mathbf r_v\|\,\mathrm du\,\mathrm dv[/tex]
We have
[tex]\mathbf r_u=\dfrac{\partial\mathbf r(u,v)}{\partial u}=\cos v\,\mathbf i+\sin v\,\mathbf j[/tex]
[tex]\mathbf r_v=\dfrac{\partial\mathbf r(u,v)}{\partial v}=-u\sin v\,\mathbf i+u\cos v\,\mathbf j+\mathbf k[/tex]
[tex]\implies\mathbf r_u\times\mathbf r_v=\sin v\,\mathbf i-\cos v\,\mathbf j+u\,\mathbf k[/tex]
[tex]\implies\|\mathbf r_u\times\mathbf r_v\|=\sqrt{1+u^2}[/tex]
So the area of [tex]H[/tex] is
[tex]\displaystyle\iint_H\mathrm dS=\int_{v=0}^{v=9\pi}\int_{u=0}^{u=1}\sqrt{1+u^2}\,\mathrm du\,\mathrm dv[/tex]
[tex]=\dfrac{9(\sqrt2+\sinh^{-1}(1))\pi}2[/tex]
[tex]\mathbb r(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+v\,\mathbf k[/tex]
for [tex]0\le u\le1[/tex] and [tex]0\le v\le9\pi[/tex]. The surface area is given by the surface integral,
[tex]\displaystyle\iint_H\mathrm dS=\iint_H\|\mathbf r_u\times\mathbf r_v\|\,\mathrm du\,\mathrm dv[/tex]
We have
[tex]\mathbf r_u=\dfrac{\partial\mathbf r(u,v)}{\partial u}=\cos v\,\mathbf i+\sin v\,\mathbf j[/tex]
[tex]\mathbf r_v=\dfrac{\partial\mathbf r(u,v)}{\partial v}=-u\sin v\,\mathbf i+u\cos v\,\mathbf j+\mathbf k[/tex]
[tex]\implies\mathbf r_u\times\mathbf r_v=\sin v\,\mathbf i-\cos v\,\mathbf j+u\,\mathbf k[/tex]
[tex]\implies\|\mathbf r_u\times\mathbf r_v\|=\sqrt{1+u^2}[/tex]
So the area of [tex]H[/tex] is
[tex]\displaystyle\iint_H\mathrm dS=\int_{v=0}^{v=9\pi}\int_{u=0}^{u=1}\sqrt{1+u^2}\,\mathrm du\,\mathrm dv[/tex]
[tex]=\dfrac{9(\sqrt2+\sinh^{-1}(1))\pi}2[/tex]
The area f the helicoid ramp is:
∫∫A) | r(u) *r( v) | dudv
The solution is:
A = 10.35×π square units
r ( u , v ) = u×cosv i + u×sinv j +v k
To get
r (u ) = δ(r ( u , v ) ) / δu = [ cosv , sinv , 0 ]
r ( v ) = δ(r ( u , v ) ) / δv = [ -u×sinv , u×cosv , 1 ]
The vectorial product is:
i j k
r (u ) * r ( v ) cosv sinv 0
-u×sinv u×cosv 1
r (u ) * r ( v ) = i × ( sinv - 0 ) - j × ( cosv - 0 ) + k ( u×cos²v + u× sin²v )
r (u ) * r ( v ) = sinv i - cosv j + u k
Now
| r (u ) * r ( v ) | = √sin²v + cos²v + u² = √ 1 + u²
Then
A = ∫₀ (9π) dv ∫₀¹ √ 1 + u² du
∫₀¹ √ 1 + u² du = 1.15
A = 1.15 × v |( 0 , 9π )
A = 10.35×π square units
Related Link : https://brainly.com/question/9825328