Respuesta :
For [tex]\fbox{\begin \\\math{x}=6\\\end{minispace}}[/tex] the function [tex]f(x)=-x^{2} +4x+12[/tex] and [tex]g(x)=-x+6[/tex] has same value.
Step by step explanation:
The given functions are,
[tex]f(x)=-x^{2}+4x+12[/tex]
[tex]g(x)=-x+6[/tex]
Step 1:
Substitute [tex]x=1[/tex] in [tex]f(x)=-x^{2} +4x+12[/tex] to obtain the value of [tex]f(1)[/tex].
[tex]f(1)=-1^{2} +4(1)+12\\f(1)=-1+4+12\\f(1)=15[/tex]
Substitute [tex]x=1[/tex] in [tex]g(x)=-x+6[/tex] to obtain the value of [tex]g(1)[/tex] .
[tex]g(1)=-1+6\\g(1)=5[/tex]
Step 2:
Substitute [tex]x=2[/tex] in [tex]f(x)=-x^{2} +4x+12[/tex] to obtain the value of [tex]f(2)[/tex].
[tex]f(2)=-2^{2} +4(2)+12\\f(2)=-4+8+12\\f(2)=16[/tex]
Substitute [tex]x=2[/tex] in [tex]g(x)=-x+6[/tex] to obtain the value of [tex]g(2)[/tex] .
[tex]g(2)=-2+6\\g(2)=4[/tex]
Step 3:
Substitute [tex]x=3[/tex] in [tex]f(x)=-x^{2} +4x+12[/tex] to obtain the value of [tex]f(3)[/tex].
[tex]f(3)=-3^{2} +4(3)+12\\f(3)=-9+12+12\\f(3)=15[/tex]
Substitute [tex]x=3[/tex] in [tex]g(x)=-x+6[/tex] to obtain the value of [tex]g(3)[/tex] .
[tex]g(3)=-3+6\\g(3)=3[/tex]
Step 4:
Substitute [tex]x=4[/tex] in [tex]f(x)=-x^{2} +4x+12[/tex] to obtain the value of [tex]f(4)[/tex].
[tex]f(4)=-4^{2} +4(4)+12\\f(4)=-16+16+12\\f(4)=12[/tex]
Substitute [tex]x=4[/tex] in [tex]g(x)=-x+6[/tex] to obtain the value of [tex]g(4)[/tex] .
[tex]g(4)=-4+6\\g(4)=2[/tex]
Step 5:
Substitute [tex]x=5[/tex] in [tex]f(x)=-x^{2} +4x+12[/tex] to obtain the value of [tex]f(5)[/tex].
[tex]f(5)=-5^{2} +4(5)+12\\f(5)=-25+20+12\\f(5)=7[/tex]
Substitute [tex]x=5[/tex] in [tex]g(x)=-x+6[/tex] to obtain the value of [tex]g(5)[/tex] .
[tex]g(5)=-5+6\\g(5)=1[/tex]
Step 6:
Substitute [tex]x=6[/tex] in [tex]f(x)=-x^{2} +4x+12[/tex] to obtain the value of [tex]f(6)[/tex].
[tex]f(6)=-6^{2} +4(6)+12\\f(6)=-36+24+12\\f(6)=0[/tex]
Substitute [tex]x=6[/tex] in [tex]g(x)=-x+6[/tex] to obtain the value of [tex]g(6)[/tex] .
[tex]g(6)=-6+6\\g(6)=0[/tex]
Step 7:
As per the given condition [tex]f(x)=g(x)[/tex].
(a). Substitute [tex]f(x)=-x^{2} +4x+12[/tex] and [tex]g(x)=-x+6[/tex] in above equation.
[tex]-x^{2} +4x+12=-x+6[/tex]
(b). Multiply with [tex]-1[/tex] on both sides.
[tex]x^{2} -4x-12=x-6[/tex]
(c). Shift the term [tex]x-6[/tex] to left hand side.
[tex]x^{2} -4x-12-x+6=0\\x^{2} -5x-6=0[/tex]
(d). Split the middle term in such a way that its sum is 5 and multiplication is 6.
[tex]x^{2} -(6-1)x-6=0\\x^{2} -6x+x-6=0\\x(x-6)+1(x-6)=0\\(x+1)(x-6)=0\\x=-1 ,6[/tex]
It is observed from the above solution that for [tex]x=6[/tex] both the functions [tex]f(x)[/tex] and [tex]g(x)[/tex] has same value.
Direct method:
[tex]f(x)=g(x)\\\Leftrightarrow-x^{2} +4x+12=-x+6\\\Leftrightarrow-x^{2} +4x+12+x-6=0\\\Leftrightarrow-x^{2} +5x+6=0\\\Leftrightarrow-x^{2} +6x-x+6=0\\\Leftrightarrow x^{2} -6x+x-6=0\\\Leftrightarrow x(x-6)+1(x-6)=0\\\Leftrightarrow(x+1)(x-6)=0\\\Leftrightarrow x=6,-1[/tex]
The table for the function [tex]f(x)=-x^{2} +4x+12[/tex] and [tex]g(x)=-x+6[/tex] is attached below.
Learn more:
1. what is the y-intercept of the quadratic function f(x) = (x – 6)(x – 2)? (0,–6) (0,12) (–8,0) (2,0) https://brainly.com/question/1332667
2. which is the graph of f(x) = (x – 1)(x + 4)? https://brainly.com/question/2334270
Answer details:
Grade: Middle school.
Subjects: Mathematics.
Chapter: Function.
Keywords: Function, Middle term split method, Binomial,Quadratic, Polynomial, Factorized, Perfect square, Zeros, Zeros of a function, Expression, Equation, x, x^2, x^3, -x^2+4x+12, -x+6, roots of equation.

